Try our new research platform with insights from 80,000+ expert users

H2O.ai vs IBM SPSS Modeler comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

H2O.ai
Ranking in Data Science Platforms
20th
Average Rating
7.6
Reviews Sentiment
7.2
Number of Reviews
8
Ranking in other categories
Model Monitoring (6th)
IBM SPSS Modeler
Ranking in Data Science Platforms
13th
Average Rating
8.0
Reviews Sentiment
6.6
Number of Reviews
39
Ranking in other categories
Data Mining (4th)
 

Mindshare comparison

As of May 2025, in the Data Science Platforms category, the mindshare of H2O.ai is 1.6%, up from 1.5% compared to the previous year. The mindshare of IBM SPSS Modeler is 2.4%, down from 2.7% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Kashif Yaseen - PeerSpot reviewer
Plug-and-play convenience enhances productivity but needs better multimodal support
We mostly used the solution in the domain that I'm working. We had most of the use cases around chatbots and conversational BI The solution was plug-and-play, meaning most of the components were handled by the solution itself rather than building them from scratch. This was useful for our banking…
PeterHuo - PeerSpot reviewer
Good tool for extracting data from data warehouses, creating streams, and manipulating logic to extract final data
There are performance issues. Extracting data from many combined tables can take hours and occasionally crash the server due to memory leaks. This performance problem bothers people. The performance issue seems to be related to the server. We design streams on the client and submit them to the server, which generates a large SQL statement. There are two potential bottlenecks: one in the server and another in data extraction. I'm unsure about the exact mechanics of data splitting when fetching from the database. When streams become larger, performance bottlenecks may occur in the IBM SPSS Modeler server or the database. Sometimes the server crashes and needs to be restarted to release memory on both sides. I'm not sure exactly where the problem is caused, as I focus on stream design rather than server issues. The problem could be on the IBM SPSS Modeler server and database.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Fast training, memory-efficient DataFrame manipulation, well-documented, easy-to-use algorithms, ability to integrate with enterprise Java apps (through POJO/MOJO) are the main reasons why we switched from Spark to H2O."
"The ease of use in connecting to our cluster machines."
"The most valuable features are the machine learning tools, the support for Jupyter Notebooks, and the collaboration that allows you to share it across people."
"The most valuable feature of H2O.ai is that it is plug-and-play."
"AutoML helps in hands-free initial evaluations of efficiency/accuracy of ML algorithms."
"One of the most interesting features of the product is their driverless component. The driverless component allows you to test several different algorithms along with navigating you through choosing the best algorithm."
"It is helpful, intuitive, and easy to use. The learning curve is not too steep."
"We have integration where you can write third-party apps. This sort of feature opens it up to being able to do anything you want."
"Very good data aggregation."
"Our business units' capabilities with SPSS Modeler is high. They no longer waste time on modeling and algorithms, meaning they are not coding any more. For example, segmentation projects now take one to three months, rather than six months to a year, as before."
"It is just a lot faster. So you do not have to write a bunch of code, you can throw that stuff on there pretty quickly and do prototyping quickly."
"We are using it either for workforce deployment or to improve our operations."
"I was familiar with using IBM SPSS Modeler separately in the private sector before that. It's a good tool for extracting data from data warehouses, creating streams, and manipulating logic to extract final data."
"It is a great product for running statistical analysis."
"Automated modelling, classification, or clustering are very useful."
 

Cons

"It needs a drag and drop GUI like KNIME, for easy access to and visibility of workflows."
"The model management features could be improved."
"I would like to see more features related to deployment."
"It lacks the data manipulation capabilities of R and Pandas DataFrames. We would kill for dplyr offloading H2O."
"On the topic of model training and model governance, this solution cannot handle ten or twelve models running at the same time."
"Referring to bullet-3 as well, H2O DataFrame manipulation capabilities are too primitive."
"H2O.ai can improve in areas like multimodal support and prompt engineering."
"The interpretability module has room for improvement. Also, it needs to improve its ability to integrate with other systems, like SageMaker, and the overall integration capability."
"The time series should be improved."
"The standard package (personal) is not supported for database connection."
"There are performance issues. Extracting data from many combined tables can take hours and occasionally crash the server due to memory leaks. This performance problem bothers people. The performance issue seems to be related to the server. We design streams on the client and submit them to the server, which generates a large SQL statement. There are two potential bottlenecks: one in the server and another in data extraction. I'm unsure about the exact mechanics of data splitting when fetching from the database."
"Regarding visual modeling, it is not the biggest strength of the product, although from what I hear in the latest release it's going to be a lot stronger. That, to me, has always been the biggest flaw in using this. It's very difficult to get good visualization."
"It would be good if IBM added help resources to the interface."
"If IBM could add some of the popular models into the SPSS for further analysis, like popular regression models, I think that would be a helpful improvement."
"The challenge for the very technical data scientists: It is constraining for them.​"
"Expensive to deploy solutions. You need to buy an extra deployment unit."
 

Pricing and Cost Advice

"We have seen significant ROI where we were able to use the product in certain key projects and could automate a lot of processes. We were even able to reduce staff."
"This tool, being an IBM product, is pretty expensive."
"I am using the free version of IBM SPSS Modeler, it is the educational edition version."
"It is an expensive product."
"If you are in a university and the license is free then you can use the tool without any charges, which is good."
"When you are close to end of quarter, IBM and its partners can get you 60% to 70% discounts, so literally wait for the last day of the quarter for the best prices. You may feel like you are getting robbed if you can't receive a good discount."
"$5,000 annually."
"The scalability was kind of limited by our ability to get other people licenses, and that was usually more of a financial constraint. It's expensive, but it's a good tool."
"It is a huge increase to time savings."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
849,686 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Computer Software Company
12%
Manufacturing Company
9%
Energy/Utilities Company
6%
Financial Services Firm
13%
Educational Organization
11%
University
9%
Computer Software Company
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What needs improvement with H2O.ai?
H2O.ai can improve in areas like multimodal support and prompt engineering. They are already working on updates and changes. Although I haven't explored all the new products they've added to their ...
What is your primary use case for H2O.ai?
We mostly used the solution in the domain that I'm working. We had most of the use cases around chatbots and conversational BI.
What advice do you have for others considering H2O.ai?
It is important to address data privacy concerns and ensure you're choosing the right vendor that meets your use case demands. Also, you may leave my name, Kashif, but please keep the company name ...
What do you like most about IBM SPSS Modeler?
Compared to other tools, the product works much easier to analyze data without coding.
What is your experience regarding pricing and costs for IBM SPSS Modeler?
The government has funds and a budget, it's hard to say if it's expensive or cheap. In Canada, they have a yearly budget. They used to encourage people to use the modeler for development. If ten us...
What needs improvement with IBM SPSS Modeler?
There are performance issues. Extracting data from many combined tables can take hours and occasionally crash the server due to memory leaks. This performance problem bothers people. The performanc...
 

Comparisons

 

Also Known As

No data available
SPSS Modeler
 

Overview

 

Sample Customers

poder.io, Stanley Black & Decker, G5, PWC, Comcast, Cisco
Reisebªro Idealtours GmbH, MedeAnalytics, Afni, Israel Electric Corporation, Nedbank Ltd., DigitalGlobe, Vodafone Hungary, Aegon Hungary, Bureau Veritas, Brammer Group, Florida Department of Juvenile Justice, InSites Consulting, Fortis Turkey
Find out what your peers are saying about H2O.ai vs. IBM SPSS Modeler and other solutions. Updated: April 2025.
849,686 professionals have used our research since 2012.