Try our new research platform with insights from 80,000+ expert users

Google Cloud AI Platform vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Apr 20, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Google Cloud AI Platform
Ranking in AI Development Platforms
9th
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
9
Ranking in other categories
No ranking in other categories
Microsoft Azure Machine Lea...
Ranking in AI Development Platforms
4th
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
62
Ranking in other categories
Data Science Platforms (4th)
 

Mindshare comparison

As of July 2025, in the AI Development Platforms category, the mindshare of Google Cloud AI Platform is 3.6%, down from 6.4% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 5.8%, down from 11.8% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms
 

Featured Reviews

HaiPham - PeerSpot reviewer
Helps with text extraction from images and has a straightforward setup process
We use Google Cloud AI Platform to extract text from images, such as forms.  The platform's Google Vision API is particularly valuable. It helps with text extraction from images.  Improvements in text extraction accuracy and pricing adjustments would be helpful. The solution is stable.  We have…
Takayuki Umehara - PeerSpot reviewer
Streamlined workflows with drag and drop convenience but needs enhancements in AI
I use Machine Learning Studio for system reselling and integration Machine Learning Studio is easy to use, with a significant feature being the drag and drop interface that enhances workflow without any complaints. It provides a return on investment and cost savings, proving beneficial for…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Some of the valuable features are the vast amount of services that are available, such as load balancer, and the AI architecture."
"The solution is able to read 90% of the documents correctly with a 10% error rate."
"Since the model could be trained in just a couple of hours and deploying it took only a few minutes, the entire process took less than an hour."
"I think the user interface is quite handy, and it is easy to use as compared to the other cloud platforms."
"The feedback left about these tools was really helpful and informative for us"
"A range of a a wide range of algorithms, EIM voice mails, which can be plugged in right away into your solution into into into our solution, and then have platform that provides know, to to come up with an operational solution really quick."
"The platform's Google Vision API is particularly valuable."
"On GCP, we are exposing our API services to our clients so that they send us their information. It can be single individual records or it can be a batch of their clients."
"It helps in building customized models, which are easy for clients to use​.​​"
"The most valuable feature is the knowledge bank, which allows us to ask questions and the AI will automatically pull the pre-prescribed responses."
"I like that it's totally easy to use. They have an AutoML solution, and their machine learning model is highly accurate. They also have a feature that can explain the machine learning model. This makes it easy for me to understand that model."
"Microsoft Azure Machine Learning Studio is easy to use and deploy."
"Regarding the technical support for the solution, I find the documentation provided comprehensive and helpful."
"Azure's AutoML feature is probably better than the competition."
"What I like best about Microsoft Azure Machine Learning Studio is that it's a straightforward tool and it's easy to use. Another valuable feature of the tool is AutoML which lets you get better metrics to train the model right and with good accuracy. The AutoML feature allows you to simply put in your data, and it'll pre-process and create a more accurate model for you. You don't have to do anything because AutoML in Microsoft Azure Machine Learning Studio will take care of it."
"The solution's most beneficial feature is its integration with Azure."
 

Cons

"Customizations are very difficult, and they take time."
"At first, there were only the user-managed rules to identify the best attributes of the individual. Then, we came up with a truth set and developed different machine learning models with the help of that truth set, so now it's completely machine learning."
"The solution can be improved by simplifying the process to make your own models."
"It could be more clear, and sometimes there are errors that I don't quite understand."
"The model management on Google Cloud AI Platform could be better."
"The initial setup was straightforward for me but could be difficult for others."
"I think it's the it it also has has evolved quite a bit over the last few years, and Google Cloud folks have been getting, more and more services. But I think from a improvement standpoint, so maybe they can look at adding more algorithms, so adding more AI algorithms to their suite."
"The technical support from Google is not very fast. I think it is about a five out of ten even though they have courses online where I can learn a lot, if I really need support, I have to wait a very long time."
"Performance is very poor."
"Stability-wise, you may face certain problems when you fail to refresh the data in the solution."
"They should have a desktop version to work on the platform."
"A problem that I encountered was that I had to pay for the model that I wanted to deploy and use on Azure Machine Learning, but there wasn't any option that that model can be used in the designer."
"The solution should be more customizable. There should be more algorithms."
"The solution must increase the amount of data sources that can be integrated."
"One area where Azure Machine Learning Studio could improve is its user interface structure."
"Enable creating ensemble models easier, adding more machine learning algorithms."
 

Pricing and Cost Advice

"The pricing is on the expensive side."
"The price of the solution is competitive."
"The solution has an attractive starting program, which costs only 300 USD for a duration of three months. During this period, one can accomplish a lot of work on the solution."
"For every thousand uses, it is about four and a half euros."
"The licenses are cheap."
"To use MLS is fairly cheap. Even the paid account is something like $20/month, unless you are provisioning large numbers of VMs for a Hadoop cluster. The main MS makes money with this solution is forcing the user to deploy their model on REST API, and being charged each time the API is accessed. There are several pricing tiers for the API. If you do not use the API, then value of MLS is to create rapid experiments ($20/month). The resulting model is not exportable to use, thus you’ll have to recreate the algorithms in either R or Python, which is what I did. MLS results gave me a direction to work with, the actual work is mostly done in R and Python outside of MLS."
"The solution operates on a pay-per-use model."
"The licensing cost is very cheap. It's less than $50 a month."
"The product is not that expensive."
"I would rate the pricing an eight out of ten, with ten being very expensive. Not very expensive, not very cheap."
"The product's pricing is reasonable."
"ML Studio's pricing becomes a numbers game."
"We pay only the Azure costs for what we use, which involves some subscription costs. But essentially, you pay for what you use. There are no extra costs in addition to the standard licensing fees."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
860,825 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
16%
Financial Services Firm
10%
Manufacturing Company
9%
University
8%
Financial Services Firm
13%
Computer Software Company
10%
Manufacturing Company
10%
Healthcare Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Google Cloud AI Platform?
A range of a a wide range of algorithms, EIM voice mails, which can be plugged in right away into your solution into into into our solution, and then have platform that provides know, to to come up...
What is your experience regarding pricing and costs for Google Cloud AI Platform?
For the most part, the pricing is perfect sinceit grows with the use of my app. In some cases, they could be more specific about the pricing, especially for some AI features.
What is your primary use case for Google Cloud AI Platform?
I use Google Cloud AI Platform due to Firebase and the many APIs that are available with it.
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
The pricing for Microsoft Azure Machine Learning Studio is reasonable since it's pay as you go, meaning it won't cost excessively unless specific resources are used.
 

Also Known As

No data available
Azure Machine Learning, MS Azure Machine Learning Studio
 

Overview

 

Sample Customers

Carousell
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about Google Cloud AI Platform vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: June 2025.
860,825 professionals have used our research since 2012.