Try our new research platform with insights from 80,000+ expert users

Google Cloud AI Platform vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Feb 8, 2026

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Google Cloud AI Platform
Ranking in AI Development Platforms
10th
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
9
Ranking in other categories
No ranking in other categories
Microsoft Azure Machine Lea...
Ranking in AI Development Platforms
5th
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
62
Ranking in other categories
Data Science Platforms (5th)
 

Mindshare comparison

As of February 2026, in the AI Development Platforms category, the mindshare of Google Cloud AI Platform is 3.2%, down from 4.9% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 3.5%, down from 8.0% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms Market Share Distribution
ProductMarket Share (%)
Microsoft Azure Machine Learning Studio3.5%
Google Cloud AI Platform3.2%
Other93.3%
AI Development Platforms
 

Featured Reviews

TJ
Owner at Go knowledge
Streamlines app development with dynamic databases and an easy setup
I used Oracle APEX before Google Cloud AI Platform. Oracle APEX is a free tool, except for the Oracle database, which I can only use with it. To have more freedom, I chose Firebase and Google's solutions as it allows me to run it on a hosted server if I want to.
reviewer2722962 - PeerSpot reviewer
Data Scientist
Platform accelerates model development, enhances collaboration, and offers efficient deployment
The best features Microsoft Azure Machine Learning Studio offers include deep integration with Python notebooks and Azure Data Lake, which allows me to import external data, and through the pipeline, I can build my models, performing what is called data injection for my model building, making that deep integration quite interesting to use. Microsoft Azure Machine Learning Studio is a powerful platform for those already in the Azure ecosystem because it allows for scalability and provides a good environment for reproducibility, as well as collaboration tools, all designed and packaged in one place, which makes it outstanding. Microsoft Azure Machine Learning Studio has positively impacted my organization by reducing our project delivery times and increasing the pace at which we work, allowing us to focus on other more important tasks. Using Microsoft Azure Machine Learning Studio has reduced our model development time from approximately four hours to about two hours.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The solution is able to read 90% of the documents correctly with a 10% error rate."
"Since the model could be trained in just a couple of hours and deploying it took only a few minutes, the entire process took less than an hour."
"A range of a a wide range of algorithms, EIM voice mails, which can be plugged in right away into your solution into into into our solution, and then have platform that provides know, to to come up with an operational solution really quick."
"I think the user interface is quite handy, and it is easy to use as compared to the other cloud platforms."
"The platform's Google Vision API is particularly valuable."
"The initial setup is very straightforward."
"Some of the valuable features are the vast amount of services that are available, such as load balancer, and the AI architecture."
"On GCP, we are exposing our API services to our clients so that they send us their information. It can be single individual records or it can be a batch of their clients."
"One of the notable advantages is that it offers both a visual designer, which is user-friendly, and an advanced coding option."
"Regarding the technical support for the solution, I find the documentation provided comprehensive and helpful."
"Azure's AutoML feature is probably better than the competition."
"The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem."
"I've developed a couple of chatbots using Azure OpenAI, leveraging its documented solutions and APIs. The tools available make it straightforward to implement machine learning solutions. However, there are challenges, such as hallucinations and security issues, but overall, it works well and is quite fast, allowing for the development of interesting projects."
"It's good for citizen data scientists, but also, other people can use Python or .NET code."
"The most valuable feature of this solution is the ability to use all of the cognitive services, prebuilt from Azure."
"I like being able to compare results across different training runs. The hyperparameter tuning function is a valuable feature because it provides the ability to run multiple experiments at the same time and compare results."
 

Cons

"One thing that I found is that Azure ML does not directly provide you with features on Google Cloud AI Platform, whereas Vertex provides some features of the platform."
"The technical support from Google is not very fast. I think it is about a five out of ten even though they have courses online where I can learn a lot, if I really need support, I have to wait a very long time."
"The initial setup was straightforward for me but could be difficult for others."
"The solution can be improved by simplifying the process to make your own models."
"The model management on Google Cloud AI Platform could be better."
"At first, there were only the user-managed rules to identify the best attributes of the individual. Then, we came up with a truth set and developed different machine learning models with the help of that truth set, so now it's completely machine learning."
"I think it's the it it also has has evolved quite a bit over the last few years, and Google Cloud folks have been getting, more and more services. But I think from a improvement standpoint, so maybe they can look at adding more algorithms, so adding more AI algorithms to their suite."
"Improvements in text extraction accuracy and pricing adjustments would be helpful."
"I would like to see modules to handle Deep Learning frameworks."
"Performance is very poor."
"Using the solution requires some specific learning which can take some time."
"I rate the support from Microsoft as five out of ten. It could be improved."
"When you use different Microsoft tools, there are different pricing metrics. It doesn't make sense. The pricing metrics are quire difficult to understand and should be either clarified or simplified. It would help us sell the solution to customers."
"Stability-wise, you may face certain problems when you fail to refresh the data in the solution."
"Technical support could improve their turnaround time."
"I have found Databricks is a better solution because it has a lot of different cluster choices and better integration with MLflow, which is much easier to handle in a machine learning system."
 

Pricing and Cost Advice

"The solution has an attractive starting program, which costs only 300 USD for a duration of three months. During this period, one can accomplish a lot of work on the solution."
"The price of the solution is competitive."
"The pricing is on the expensive side."
"The licenses are cheap."
"For every thousand uses, it is about four and a half euros."
"To use MLS is fairly cheap. Even the paid account is something like $20/month, unless you are provisioning large numbers of VMs for a Hadoop cluster. The main MS makes money with this solution is forcing the user to deploy their model on REST API, and being charged each time the API is accessed. There are several pricing tiers for the API. If you do not use the API, then value of MLS is to create rapid experiments ($20/month). The resulting model is not exportable to use, thus you’ll have to recreate the algorithms in either R or Python, which is what I did. MLS results gave me a direction to work with, the actual work is mostly done in R and Python outside of MLS."
"My team didn't deal with the licensing for Microsoft Azure Machine Learning Studio, so I'm unable to comment on pricing, but the money that was spent on the tool was worth it."
"I would rate the pricing an eight out of ten, with ten being very expensive. Not very expensive, not very cheap."
"From a developer's perspective, I find the price of this solution high."
"The solution cost is high."
"Last year, we paid 60,000 for Microsoft Azure Machine Learning Studio in our department."
"I used the free student license for a few months to operate the solution, but I'll have to pay for it if I want to do more now."
"We pay only the Azure costs for what we use, which involves some subscription costs. But essentially, you pay for what you use. There are no extra costs in addition to the standard licensing fees."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
882,333 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
13%
Financial Services Firm
11%
Manufacturing Company
10%
University
8%
Financial Services Firm
10%
Manufacturing Company
9%
Computer Software Company
8%
Performing Arts
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business5
Midsize Enterprise2
Large Enterprise2
By reviewers
Company SizeCount
Small Business23
Midsize Enterprise6
Large Enterprise30
 

Questions from the Community

What is your experience regarding pricing and costs for Google Cloud AI Platform?
For the most part, the pricing is perfect sinceit grows with the use of my app. In some cases, they could be more specific about the pricing, especially for some AI features.
What is your primary use case for Google Cloud AI Platform?
I use Google Cloud AI Platform due to Firebase and the many APIs that are available with it.
What advice do you have for others considering Google Cloud AI Platform?
I have knowledge of it, and I do recommend Google Cloud AI Platform to other people. I would definitely rate the overall solution as an eight out of ten.
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
The pricing for Microsoft Azure Machine Learning Studio is reasonable since it's pay as you go, meaning it won't cost excessively unless specific resources are used.
 

Also Known As

No data available
Azure Machine Learning, MS Azure Machine Learning Studio
 

Overview

 

Sample Customers

Carousell
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about Google Cloud AI Platform vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: February 2026.
882,333 professionals have used our research since 2012.