Try our new research platform with insights from 80,000+ expert users

Apache Spark vs HPE Data Fabric comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Spark
Ranking in Hadoop
2nd
Average Rating
8.4
Reviews Sentiment
6.9
Number of Reviews
67
Ranking in other categories
Compute Service (4th), Java Frameworks (2nd)
HPE Data Fabric
Ranking in Hadoop
4th
Average Rating
8.0
Reviews Sentiment
6.1
Number of Reviews
12
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of October 2025, in the Hadoop category, the mindshare of Apache Spark is 19.0%, up from 18.7% compared to the previous year. The mindshare of HPE Data Fabric is 14.4%, up from 13.4% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Hadoop Market Share Distribution
ProductMarket Share (%)
Apache Spark19.0%
HPE Ezmeral Data Fabric14.4%
Other66.6%
Hadoop
 

Featured Reviews

Omar Khaled - PeerSpot reviewer
Empowering data consolidation and fast decision-making with efficient big data processing
I can improve the organization's functions by taking less time to make decisions. To make the right decision, you need the right data, and a solution can provide this by hiring talent and employees who can consolidate data from different sources and organize it. Not all solutions can make this data fast enough to be used, except for solutions such as Apache Spark Structured Streaming. To make the right decision, you should have both accurate and fast data. Apache Spark itself is similar to the Python programming language. Python is a language with many libraries for mathematics and machine learning. Apache Spark is the solution, and within it, you have PySpark, which is the API for Apache Spark to write and run Python code. Within it, there are many APIs, including SQL APIs, allowing you to write SQL code within a Python function in Apache Spark. You can also use Apache Spark Structured Streaming and machine learning APIs.
Arnab Chatterjee - PeerSpot reviewer
It's flexible and easily accessible across multiple locations, but the upgrade process is complicated
Upgrading Ezmeral to a new version is a pain. They're trying to make the solution more container-friendly, so I think they're going in the right direction. The only problem we've had in the past was the upgrades. The process isn't smooth due to how the Red Hat operating system upgrades currently work. They're transforming their host stack to increase cloud readiness and edge compute capability. HPE is transitioning from a standard data-driven approach to one powered by AI analytics. That's something they have released very recently. I haven't tried that, but it will probably make things easier. The ability to adapt Ezmeral to the public cloud is probably missing. I've heard that they're getting leaner. However, it doesn't have a clear managed services offering for you if you want to deploy this stack on the cloud. That's a problem. This probably won't meet your needs if you require consistency across on-prem and the cloud. It's not Ezmeral's fault. None of the products would fit the bill. Cloud offerings are biased towards their own implementation. It's a general issue on most big data platforms. They're already working towards that, but it hasn't been released.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Features include machine learning, real time streaming, and data processing."
"The tool's most valuable feature is its speed and efficiency. It's much faster than other tools and excels in parallel data processing. Unlike tools like Python or JavaScript, which may struggle with parallel processing, it allows us to handle large volumes of data with more power easily."
"The most significant advantage of Spark 3.0 is its support for DataFrame UDF Pandas UDF features."
"Spark is used for transformations from large volumes of data, and it is usefully distributed."
"Spark can handle small to huge data and is suitable for any size of company."
"The memory processing engine is the solution's most valuable aspect. It processes everything extremely fast, and it's in the cluster itself. It acts as a memory engine and is very effective in processing data correctly."
"Now, when we're tackling sentiment analysis using NLP technologies, we deal with unstructured data—customer chats, feedback on promotions or demos, and even media like images, audio, and video files. For processing such data, we rely on PySpark. Beneath the surface, Spark functions as a compute engine with in-memory processing capabilities, enhancing performance through features like broadcasting and caching. It's become a crucial tool, widely adopted by 90% of companies for a decade or more."
"The processing time is very much improved over the data warehouse solution that we were using."
"I like the administration part."
"My customers find the product cheaper compared to other solutions. The previous solution that we used did not have unified analytics like the runtime or the analog."
"HPE Ezmeral Data Fabric can be accessed from any namespace globally as you would access it from a machine using an NFS."
"The model creation was very interesting, especially with the libraries provided by the platform."
"It is a stable solution...It is a scalable solution."
 

Cons

"The management tools could use improvement. Some of the debugging tools need some work as well. They need to be more descriptive."
"Apache Spark could potentially improve in terms of user-friendliness, particularly for individuals with a SQL background. While it's suitable for those with programming knowledge, making it more accessible to those without extensive programming skills could be beneficial."
"It requires overcoming a significant learning curve due to its robust and feature-rich nature."
"Apache Spark is very difficult to use. It would require a data engineer. It is not available for every engineer today because they need to understand the different concepts of Spark, which is very, very difficult and it is not easy to learn."
"More ML based algorithms should be added to it, to make it algorithmic-rich for developers."
"They could improve the issues related to programming language for the platform."
"I would like to see integration with data science platforms to optimize the processing capability for these tasks."
"I know there is always discussion about which language to write applications in and some people do love Scala. However, I don't like it."
"The deployment could be faster. I want more support for the data lake in the next release."
"Having the ability to extend the services provided by the platform to an API architecture, a micro-services architecture, could be very helpful."
"The product is not user-friendly."
"Upgrading Ezmeral to a new version is a pain. They're trying to make the solution more container-friendly, so I think they're going in the right direction. The only problem we've had in the past was the upgrades. The process isn't smooth due to how the Red Hat operating system upgrades currently work."
"HPE Ezmeral Data Fabric is not compatible with third-party tools."
 

Pricing and Cost Advice

"They provide an open-source license for the on-premise version."
"Apache Spark is an expensive solution."
"Apache Spark is open-source. You have to pay only when you use any bundled product, such as Cloudera."
"Since we are using the Apache Spark version, not the data bricks version, it is an Apache license version, the support and resolution of the bug are actually late or delayed. The Apache license is free."
"It is an open-source platform. We do not pay for its subscription."
"The tool is an open-source product. If you're using the open-source Apache Spark, no fees are involved at any time. Charges only come into play when using it with other services like Databricks."
"It is quite expensive. In fact, it accounts for almost 50% of the cost of our entire project."
"Spark is an open-source solution, so there are no licensing costs."
"HPE is flexible with you if you are an existing customer. They offer different models that might be beneficial for your organization. It all depends on how you negotiate."
"The tool's price is cheap and based on a usage basis. The solution's licensing costs are yearly and there are no extra costs."
"There is a need for my company to pay for the licensing costs of the solution."
report
Use our free recommendation engine to learn which Hadoop solutions are best for your needs.
872,655 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
27%
Computer Software Company
11%
Comms Service Provider
7%
Manufacturing Company
7%
Financial Services Firm
15%
Computer Software Company
13%
Comms Service Provider
12%
Government
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business27
Midsize Enterprise15
Large Enterprise32
By reviewers
Company SizeCount
Small Business4
Large Enterprise7
 

Questions from the Community

What do you like most about Apache Spark?
We use Spark to process data from different data sources.
What is your experience regarding pricing and costs for Apache Spark?
Apache Spark is open-source, so it doesn't incur any charges.
What needs improvement with Apache Spark?
Regarding Apache Spark, I have only used Apache Spark Structured Streaming, not the machine learning components. I am uncertain about specific improvements needed today. However, after five years, ...
Ask a question
Earn 20 points
 

Also Known As

No data available
MapR, MapR Data Platform
 

Overview

 

Sample Customers

NASA JPL, UC Berkeley AMPLab, Amazon, eBay, Yahoo!, UC Santa Cruz, TripAdvisor, Taboola, Agile Lab, Art.com, Baidu, Alibaba Taobao, EURECOM, Hitachi Solutions
Valence Health, Goodgame Studios, Pico, Terbium Labs, sovrn, Harte Hanks, Quantium, Razorsight, Novartis, Experian, Dentsu ix, Pontis Transitions, DataSong, Return Path, RAPP, HP
Find out what your peers are saying about Apache Spark vs. HPE Data Fabric and other solutions. Updated: September 2025.
872,655 professionals have used our research since 2012.