Try our new research platform with insights from 80,000+ expert users

Amazon SageMaker vs Starburst Galaxy comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon SageMaker
Ranking in Data Science Platforms
3rd
Average Rating
7.8
Reviews Sentiment
7.0
Number of Reviews
38
Ranking in other categories
AI Development Platforms (5th)
Starburst Galaxy
Ranking in Data Science Platforms
13th
Average Rating
9.8
Reviews Sentiment
1.0
Number of Reviews
7
Ranking in other categories
Streaming Analytics (17th)
 

Mindshare comparison

As of August 2025, in the Data Science Platforms category, the mindshare of Amazon SageMaker is 6.1%, down from 8.8% compared to the previous year. The mindshare of Starburst Galaxy is 0.8%, up from 0.8% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Saurabh Jaiswal - PeerSpot reviewer
Create innovative assistants with seamless data integration for large-scale projects
The various integration options available in Amazon SageMaker, such as Firehose for connecting to data pipelines, are simple to use. Tools like AWS Glue integrate well for data transformations. The Databricks integration aids data scientists and engineers. SageMaker is fully managed, offers high availability, flexibility with TensorFlow, PyTorch, and MXNet, and comes with pre-trained algorithms for forecasting, anomaly detection, and more.
Stephen-Howard - PeerSpot reviewer
Federated querying delivers integrated data at record speed and reduces processing time
The biggest win has been the ability to combine data from multiple sources and deliver it to the business at record speed. This capability has allowed us to query directly through Starburst Galaxy, enabling teams to access integrated data that would otherwise be hard to pull together. This has reduced both our ETL processing time and storage costs. We are answering questions that would have been hard, if not impossible, to answer previously because the data came from disparate, disconnected sources.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The tool makes our ML model development a bit more efficient because everything is in one environment."
"I have contacted the solution's technical support, and they were really good. I rate the technical support a ten out of ten."
"I recommend SageMaker for ML projects if you need to build models from scratch."
"The various integration options available in Amazon SageMaker, such as Firehose for connecting to data pipelines, are simple to use."
"The technical support from AWS is excellent."
"They are doing a good job of evolving."
"SageMaker supports building, training, and deploying AI models from scratch, which is crucial for my ML project."
"The intuitive interface and streamlined user experience make it easy to navigate and set up various tools like Visual Studio Code or Jupyter Notebook."
"Starburst Galaxy is becoming a cornerstone of our data platform, empowering us to make smarter and faster decisions across the organization."
"Starburst Galaxy serves as our primary SQL-based data processing engine, a strategic decision driven by its seamless integration with our AWS cloud infrastructure and its ability to deliver high performance with low-latency responses."
"Starburst on Trino, combined with our SQL-native data transformation tool SQLMesh, has delivered anywhere from a two to five times improvement in compute performance across our transformation DAG."
"Starburst Galaxy has improved our organization by unifying access to all major data sources, reducing the need for complex ETL processes."
"Starburst Galaxy has improved our organization by unifying access to all major data sources, reducing the need for complex ETL processes."
 

Cons

"There are other better solutions for large data, such as Databricks."
"The training modules could be enhanced. We had to take in-person training to fully understand SageMaker, and while the trainers were great, I think more comprehensive online modules would be helpful."
"They could add features such as managing environments, experiment management across those environments, and the integration with training datasets as you go through those experiments."
"I had to create custom templates for labeling multi-data sets, such as text and images, which was time-consuming."
"In general, improvements are needed on the performance side of the product's graphical user interface-related area since it consumes a lot of time for a user."
"Improvements are needed in terms of complexity, data security, and access policy integration in Amazon SageMaker."
"Amazon might need to emphasize its capabilities in generative models more effectively."
"I would suggest that Amazon SageMaker provide free slots to allow customers to practice, such as a free slot to try out working with a Sandbox."
"Cluster startup time can be slow, sometimes taking over a minute."
"Cluster startup time is another pain point, typically 3 to 5 minutes, which is not the worst with proper planning but can be annoying for ad-hoc work."
"The most persistent issue is the cluster spin-up time."
 

Pricing and Cost Advice

"On a scale from one to ten, where one is cheap, and ten is expensive, I rate the solution's pricing a six out of ten."
"You don't pay for Sagemaker. You only pay for the compute instances in your storage."
"The solution is relatively cheaper."
"Databricks solution is less costly than Amazon SageMaker."
"The pricing is complicated as it is based on what kind of machines you are using, the type of storage, and the kind of computation."
"SageMaker is worth the money for our use case."
"The product is expensive."
"The cost offers a pay-as-you-go pricing model. It depends on the instance that you do."
Information not available
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
865,384 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
19%
Computer Software Company
11%
Manufacturing Company
9%
University
5%
Financial Services Firm
32%
Computer Software Company
15%
University
7%
Government
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
What do you like most about Amazon SageMaker?
We've had experience with unique ML projects using SageMaker. For example, we're developing a platform similar to ChatGPT that requires models. We utilize Amazon SageMaker to create endpoints for t...
What is your experience regarding pricing and costs for Amazon SageMaker?
If you manage it effectively, their pricing is reasonable. It's similar to anything in the cloud; if you don't manage it properly, it can be expensive, but if you do, it's fine.
What is your experience regarding pricing and costs for Starburst Galaxy?
You pay for cluster uptime. It is important to be aggressive about autoscaling, as a single worker will get you a long way. I recommend never connecting a BI tool to your Galaxy cluster. Instead, w...
What needs improvement with Starburst Galaxy?
As a hosted option, I wish I had more control over the cluster configuration, specifically regarding some of the more advanced options. Trino is extremely flexible and powerful, but some of this fu...
What is your primary use case for Starburst Galaxy?
I use Starburst as a cost-efficient hosted option for Trino for data integration and ad-hoc analysis across a broad range of data sources. It is surprisingly useful to query SQL Server, a Google Sh...
 

Comparisons

 

Also Known As

AWS SageMaker, SageMaker
No data available
 

Overview

 

Sample Customers

DigitalGlobe, Thomson Reuters Center for AI and Cognitive Computing, Hotels.com, GE Healthcare, Tinder, Intuit
Information Not Available
Find out what your peers are saying about Amazon SageMaker vs. Starburst Galaxy and other solutions. Updated: August 2025.
865,384 professionals have used our research since 2012.