Try our new research platform with insights from 80,000+ expert users

Amazon SageMaker vs Starburst Enterprise comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon SageMaker
Ranking in Data Science Platforms
3rd
Average Rating
7.8
Reviews Sentiment
7.0
Number of Reviews
38
Ranking in other categories
AI Development Platforms (5th)
Starburst Enterprise
Ranking in Data Science Platforms
12th
Average Rating
8.6
Reviews Sentiment
6.9
Number of Reviews
2
Ranking in other categories
Streaming Analytics (14th)
 

Mindshare comparison

As of July 2025, in the Data Science Platforms category, the mindshare of Amazon SageMaker is 6.2%, down from 9.3% compared to the previous year. The mindshare of Starburst Enterprise is 2.2%, up from 1.7% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Saurabh Jaiswal - PeerSpot reviewer
Create innovative assistants with seamless data integration for large-scale projects
The various integration options available in Amazon SageMaker ( /products/amazon-sagemaker-reviews ), such as Firehose for connecting to data pipelines, are simple to use. Tools like AWS Glue ( /products/aws-glue-reviews ) integrate well for data transformations. The Databricks ( /products/databricks-reviews ) integration aids data scientists and engineers. SageMaker is fully managed, offers high availability, flexibility with TensorFlow ( /products/tensorflow-reviews ), PyTorch ( /products/pytorch-reviews ), and MXNet ( /products/mxnet-reviews ), and comes with pre-trained algorithms for forecasting, anomaly detection, and more.
KamleshPant - PeerSpot reviewer
Connects to any data source from any region and offers unified access
There are no specific projects supported by Starburst regarding AI initiatives or machine learning projects. In the future, if we have all the data available, we can definitely capitalize on AI/ML and LLM capabilities to summarize data and gain insights. That's our future goal, but we haven't reached that point yet. There should be support for REST API data sources to access data from the web. We often have data coming in and communicate with data sources via REST API calls. I don't see that capability in Starburst currently; everything is through JDBC or ODBC. If Starburst could seamlessly access data using REST API capabilities, it would be a game-changer. The self-service data management features, like self-service materialized views, are great, but they can be a bit complex for basic users to understand.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"I have seen a return on investment, probably a factor of four or five."
"Allows you to create API endpoints."
"The feature I found most valuable is the data catalog, as it assists with the lineage of data through the preparation pipeline."
"The most valuable features include the ML operations that allow for designing, deploying, testing, and evaluating models."
"They offer insights into everyone making calls in my organization."
"The tool has made client management easier where patients need to upload their health records and we can use the tool to understand details on treatment date, amount, etc."
"The most tool's valuable feature, in my experience, is hyperparameter tuning. It allows us to test different parameters for the same model in parallel, which helps us quickly identify the configuration that yields the highest accuracy. This parallel computing capability saves us a lot of time."
"The solution is easy to scale...The documentation and online community support have been sufficient for us so far."
"It's very scalable, fast performing, and supports many catalogs."
"We have noticed improvements in performance using Starburst Enterprise. It handles complex data, including reading and partitioning files. We can add a new catalog to Starburst Enterprise by providing connection details and service account information. This allows us to integrate with existing tools, such as the Snowflake database, which we use for data protection in our project."
 

Cons

"They could add features such as managing environments, experiment management across those environments, and the integration with training datasets as you go through those experiments."
"There are other better solutions for large data, such as Databricks."
"The solution needs to be cheaper since it now charges per document for extraction."
"Creating notebook instances for multiple users is pretty expensive in Amazon SageMaker."
"The entry point can be a bit difficult. Having all documentation easily accessible on the front page of SageMaker would be a great improvement."
"The pricing of the solution is an issue...In SageMaker, monitoring could be improved by supporting more data types other than JSON and CSV."
"The platform could be more accessible to users with basic coding skills, making it more intuitive and easier for beginners to use comfortably."
"The payment and monitoring metrics are a bit confusing not only for Amazon SageMaker but also for the range of other products that fall under AWS, especially for a new user of the product."
"Starburst Enterprise could improve by offering additional features similar to those provided by other SQL query tools. For example, incorporating functionalities like pivot tables would make it more feasible to use."
"There should be support for REST API data sources to access data from the web."
 

Pricing and Cost Advice

"The pricing could be better, especially for querying. The per-query model feels expensive."
"The tool's pricing is reasonable."
"SageMaker is worth the money for our use case."
"The support costs are 10% of the Amazon fees and it comes by default."
"Databricks solution is less costly than Amazon SageMaker."
"I would rate the solution's price a ten out of ten since it is very high."
"In terms of pricing, I'd also rate it ten out of ten because it's been beneficial compared to other solutions."
"The solution is relatively cheaper."
"I haven't personally dealt with the pricing aspects first-hand, but from what I understand, it largely depends on the specifics of your setup, especially the machines you use on AWS. The cost of using Starburst Enterprise can vary based on the amount of data you're processing and the type of machines you opt for, whether on AWS or another cloud platform."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
864,053 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
19%
Computer Software Company
11%
Manufacturing Company
9%
University
6%
Financial Services Firm
44%
Computer Software Company
7%
Energy/Utilities Company
5%
Government
4%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
What do you like most about Amazon SageMaker?
We've had experience with unique ML projects using SageMaker. For example, we're developing a platform similar to ChatGPT that requires models. We utilize Amazon SageMaker to create endpoints for t...
What is your experience regarding pricing and costs for Amazon SageMaker?
The pricing is high, around an eight. However, SageMaker offers free trials for the first two months, allowing users to determine which features they need. It is considered value for money given it...
What is your experience regarding pricing and costs for Starburst Enterprise?
I haven't personally dealt with the pricing aspects first-hand, but from what I understand, it largely depends on the specifics of your setup, especially the machines you use on AWS. The cost of us...
What needs improvement with Starburst Enterprise?
There are no specific projects supported by Starburst regarding AI initiatives or machine learning projects. In the future, if we have all the data available, we can definitely capitalize on AI/ML ...
What is your primary use case for Starburst Enterprise?
We use Starburst with one client who is exploring their ecosystem to remove data silos and enable data access across departments. It's a very big ecosystem, like a finance institute. They are curre...
 

Also Known As

AWS SageMaker, SageMaker
No data available
 

Overview

 

Sample Customers

DigitalGlobe, Thomson Reuters Center for AI and Cognitive Computing, Hotels.com, GE Healthcare, Tinder, Intuit
Information Not Available
Find out what your peers are saying about Amazon SageMaker vs. Starburst Enterprise and other solutions. Updated: July 2025.
864,053 professionals have used our research since 2012.