

Find out in this report how the two Data Science Platforms solutions compare in terms of features, pricing, service and support, easy of deployment, and ROI.
| Product | Market Share (%) |
|---|---|
| Microsoft Azure Machine Learning Studio | 3.7% |
| Starburst Galaxy | 1.0% |
| Other | 95.3% |
| Company Size | Count |
|---|---|
| Small Business | 23 |
| Midsize Enterprise | 6 |
| Large Enterprise | 30 |
| Company Size | Count |
|---|---|
| Small Business | 4 |
| Midsize Enterprise | 2 |
| Large Enterprise | 1 |
Azure Machine Learning is a cloud predictive analytics service that makes it possible to quickly create and deploy predictive models as analytics solutions.
It has everything you need to create complete predictive analytics solutions in the cloud, from a large algorithm library, to a studio for building models, to an easy way to deploy your model as a web service. Quickly create, test, operationalize, and manage predictive models.
Microsoft Azure Machine Learning Will Help You:
With Microsoft Azure Machine Learning You Can:
Microsoft Azure Machine Learning Features:
Microsoft Azure Machine Learning Benefits:
Reviews from Real Users:
"The ability to do the templating and be able to transfer it so that I can easily do multiple types of models and data mining is a valuable aspect of this solution. You only have to set up the flows, the templates, and the data once and then you can make modifications and test different segmentations throughout.” - Channing S.l, Owner at Channing Stowell Associates
"The most valuable feature is the knowledge bank, which allows us to ask questions and the AI will automatically pull the pre-prescribed responses.” - Chris P., Tech Lead at a tech services company
"The UI is very user-friendly and the AI is easy to use.” - Mikayil B., CRM Consultant at a computer software company
"The solution is very fast and simple for a data science solution.” - Omar A., Big Data & Cloud Manager at a tech services company
Starburst Galaxy offers rapid query speeds and robust cluster management, enhancing data engineering efficiency while supporting AWS integrations and cross-database functionality. Users benefit from its advanced data integration and federated querying capabilities.
Starburst Galaxy stands out with a compute-focused architecture that excels in facilitating seamless data integration. Technological innovations like autoscaling clusters and automated metadata management optimize operations in multi-tenant environments. With a keen emphasis on compatibility, the platform provides support for AWS Glue and enables federated querying across S3, Snowflake, and Redshift. This adaptability ensures comprehensive ETL processes and enhances analytics through querying SQL Server, Google Sheets, and blob stores. While noted for its robust capabilities, users seek improvements in cluster startup times, Tableau and AI support, and desire infrastructure-as-code enhancements.
What are Starburst Galaxy's key features?In industries focusing on large-scale data efforts, Starburst Galaxy plays an essential role in connecting data sources like Amazon S3 and RDS, streamlining tasks in data engineering and ad-hoc analysis across complex environments. Teams leverage its cross-database querying to boost AWS analytics, with features tailored for sectors needing agile data solutions, from ETL pipelines to secure data federation.
We monitor all Data Science Platforms reviews to prevent fraudulent reviews and keep review quality high. We do not post reviews by company employees or direct competitors. We validate each review for authenticity via cross-reference with LinkedIn, and personal follow-up with the reviewer when necessary.