Try our new research platform with insights from 80,000+ expert users

Hugging Face vs IBM Watson Machine Learning comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 4, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Hugging Face
Ranking in AI Development Platforms
3rd
Average Rating
8.2
Reviews Sentiment
7.1
Number of Reviews
13
Ranking in other categories
No ranking in other categories
IBM Watson Machine Learning
Ranking in AI Development Platforms
14th
Average Rating
8.0
Reviews Sentiment
7.1
Number of Reviews
7
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of June 2025, in the AI Development Platforms category, the mindshare of Hugging Face is 13.1%, up from 8.6% compared to the previous year. The mindshare of IBM Watson Machine Learning is 1.8%, down from 2.3% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms
 

Featured Reviews

SwaminathanSubramanian - PeerSpot reviewer
Versatility empowers AI concept development despite the multi-GPU challenge
Regarding scalability, I'm finding the multi-GPU aspect of it challenging. Training the model is another hurdle, although I'm only getting into that aspect currently. Organizations are apprehensive about investing in multi-GPU setups. Additionally, data cleanup is a challenge that needs to be resolved, as data must be mature and pristine.
Anurag Mayank - PeerSpot reviewer
A highly efficient solution that delivers the desired results to its users
I had not considered how the solution could be improved because I was focused on how it was helping me to solve my issues. If I consider how we want to use it in our organization, certain areas of improvement can be addressed. For instance, we want to use it with Generative AI, not like ChatGPT, but in a way intended for industrial use. It would be beneficial to incorporate more AI into the solution.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"I like that Hugging Face is versatile in the way it has been developed."
"There are numerous libraries available, and the documentation is rich and step-by-step, helping us understand which model to use in particular conditions."
"I would rate this product nine out of ten."
"The tool's most valuable feature is that it shows trending models. All the new models, even Google's demo models, appear at the top. You can find all the open-source models in one place. You can use them directly and easily find their documentation. It's very simple to find documentation and write code. If you want to work with AI and machine learning, Hugging Face is a perfect place to start."
"I appreciate the versatility and the fact that it has generalized many models."
"The product is reliable."
"Overall, the platform is excellent."
"The solution is easy to use compared to other frameworks like PyTorch and TensorFlow."
"Scalability-wise, I rate the solution ten out of ten."
"The most valuable aspect of the solution's the cost and human labor savings."
"We can enable and change developer productivity with artificial intelligence-recommended code based on natural language input or exciting source code."
"It has improved self-service and customer satisfaction."
"It is has a lot of good features and we find the image classification very useful."
"I was particularly interested in trying the AutoML feature to see how it handles data and proposes new models. The variety of models it provides is impressive."
"The solution is very valuable to our organization due to the fact that we can work on it as a workflow."
 

Cons

"Implementing a cloud system to showcase historical data would be beneficial."
"The area that needs improvement would be the organization of the materials. It could be clearer and more systematic. It would be good if the layout was clear and we could search the models easily."
"The solution must provide an efficient LLM."
"I've worked on three projects using Hugging Face, and only once did we encounter a problem with the code. We had to use another open-source embedding from OpenAI to resolve it. Our team has three members: me, my colleague, and a team leader. We looked at the problem and resolved it."
"Access to the models and datasets could be improved."
"Regarding scalability, I'm finding the multi-GPU aspect of it challenging. Training the model is another hurdle, although I'm only getting into that aspect currently."
"It can incorporate AI into its services."
"Most people upload their pre-trained models on Hugging Face, but more details should be added about the models."
"Scaling is limited in some use cases. They need to make it easier to expand in all aspects."
"If I consider how we want to use it in our organization, certain areas of improvement can be addressed. For instance, we want to use it with Generative AI, not like ChatGPT, but in a way intended for industrial use."
"In future releases, I would like to see a more flexible environment."
"They should add more GPU processing power to improve performance, especially when dealing with large amounts of data."
"Honestly, I haven't seen any comparative report that has run the same data through two different artificial intelligence or machine learning capabilities to get something out of it. I would love to see that."
"Sometimes training the model is difficult."
"The supporting language is limited."
 

Pricing and Cost Advice

"We do not have to pay for the product."
"The solution is open source."
"I recall seeing a fee of nine dollars, and there's also an enterprise option priced at twenty dollars per month."
"Hugging Face is an open-source solution."
"So, it's requires expensive machines to open services or open LLM models."
"The tool is open-source. The cost depends on what task you're doing. If you're using a large language model with around 12 million parameters, it will cost more. On average, Hugging Face is open source so you can download models to your local machine for free. For deployment, you can use any cloud service."
"The pricing model is good."
"I've only been using the free tier, but it's quite competitive on a service basis."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
856,873 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
11%
Manufacturing Company
10%
Financial Services Firm
10%
University
9%
Computer Software Company
16%
Financial Services Firm
11%
University
10%
Educational Organization
9%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What do you like most about Hugging Face?
My preferred aspects are natural language processing and question-answering.
What needs improvement with Hugging Face?
It is challenging to suggest specific improvements for Hugging Face, as their platform is already very well-organized and efficient. However, they could focus on cleaning up outdated models if they...
What is your primary use case for Hugging Face?
I am working on AI with various large language models for different purposes such as medicine and law, where they are fine-tuned with specific requirements. I download LLMs from Hugging Face for th...
What do you like most about IBM Watson Machine Learning?
I was particularly interested in trying the AutoML feature to see how it handles data and proposes new models. The variety of models it provides is impressive.
What needs improvement with IBM Watson Machine Learning?
Sometimes training the model is difficult. We need to have at least a few different components to evaluate and understand the behavior of different users to have a very, very high accuracy in the m...
 

Overview

Find out what your peers are saying about Hugging Face vs. IBM Watson Machine Learning and other solutions. Updated: June 2025.
856,873 professionals have used our research since 2012.