Try our new research platform with insights from 80,000+ expert users

Databricks vs Google Cloud Datalab comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Databricks
Ranking in Data Science Platforms
1st
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
89
Ranking in other categories
Cloud Data Warehouse (7th), Streaming Analytics (1st)
Google Cloud Datalab
Ranking in Data Science Platforms
16th
Average Rating
7.8
Reviews Sentiment
6.4
Number of Reviews
6
Ranking in other categories
Data Visualization (18th)
 

Mindshare comparison

As of April 2025, in the Data Science Platforms category, the mindshare of Databricks is 18.2%, down from 19.1% compared to the previous year. The mindshare of Google Cloud Datalab is 0.9%, down from 1.2% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

ShubhamSharma7 - PeerSpot reviewer
Capability to integrate diverse coding languages in a single notebook greatly enhances workflow
Databricks offers various courses that I can use, whether it's PySpark, Scala, or R. I can leverage all these courses in a single notebook, which is beneficial for clients as they can access various tools in one place whenever needed. This is quite significant. I usually work with PySpark based on client requirements. After coding, I feed the Databricks notebooks into the ADF pipeline for updates. Databricks' capability to process data in parallel enhances data processing speed. Furthermore, I can connect our Databricks notebook directly with Power BI and other visualization tools like Qlik. Once we develop code, it allows us to transform raw data into visualizations for clients using analysis diagrams, which is very helpful.
Nilesh Gode - PeerSpot reviewer
Easy to setup, stable and easy to design data pipelines
The scalability is average. We have not faced any issues with scalability. There are more than 500 end users using this solution in our company. It is an integral part of the daily operations. The usage pattern is not a one-time thing; employees regularly access and utilize the application. We use it at a global level with a scattered user base. This means that users don't all use the application at the same time. So, around 300 out of 500 employees use the solution, and this usage is spread out throughout the day.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Databricks makes it really easy to use a number of technologies to do data analysis. In terms of languages, we can use Scala, Python, and SQL. Databricks enables you to run very large queries, at a massive scale, within really good timeframes."
"Databricks gives us the ability to build a lakehouse framework and do everything implicit to this type of database structure. We also like the ability to stream events. Databricks covers a broad spectrum, from reporting and machine learning to streaming events. It's important for us to have all these features in one platform."
"Databricks integrates well with other solutions."
"Databricks offers various courses that I can use, whether it's PySpark, Scala, or R."
"Databricks allows me to automate the creation of a cluster, optimized for machine learning and construct AI machine learning models for the client."
"Automation with Databricks is very easy when using the API."
"The setup was straightforward."
"The most valuable aspect of the solution is its notebook. It's quite convenient to use, both terms of the research and the development and also the final deployment, I can just declare the spark jobs by the load tables. It's quite convenient."
"In MLOps, when we are designing the data pipeline, the designing of the data pipeline is easy in Google Cloud."
"The infrastructure is highly reliable and efficient, contributing to a positive experience."
"The APIs are valuable."
"All of the features of this product are quite good."
"For me, it has been a stable product."
"Google Cloud Datalab is very customizable."
 

Cons

"It would be great if Databricks could integrate all the cloud platforms."
"Databricks' technical support takes a while to respond and could be improved."
"While Databricks is generally a robust solution, I have noticed a limitation with debugging in the Delta Live Table, which could be improved."
"The tool should improve its integration with other products."
"Would be helpful to have additional licensing options."
"They release patches that sometimes break our code. These patches are supposed to fix issues, but sometimes they cause disruptions."
"Generative AI is catching up in areas like data governance and enterprise flavor. Hence, these are places where Databricks has to be faster."
"The solution could be improved by integrating it with data packets. Right now, the load tables provide a function, like team collaboration. Still, it's unclear as to if there's a function to create different branches and/or more branches. Our team had used data packets before, however, I feel it's difficult to integrate the current with the previous data packets."
"Even if your application is always connected to its database, the processing can be cumbersome. It shouldn't be so complicated."
"There is room for improvement in the graphical user interface. So that the initial user would use it properly, that would be a good option."
"Connectivity challenges for end-users, particularly when loading data, environments, and libraries, need to be addressed for an enhanced user experience."
"The product must be made more user-friendly."
"The interface should be more user-friendly."
"We have also encountered challenges during our transition period in terms of data control and segmentation. The management of each channel and data structure as it has its own unique characteristics requires very detailed and precise control. The allocation should be appropriate and the complexity increases due to the different time zones and geographic locations of our clients. The process usually involves migrating the existing database sets to gcp and ensure data integrity is maintained. This is the only challenge that we faced while navigating the integers of the solution and honestly it was an interesting and unique experience."
 

Pricing and Cost Advice

"The pricing depends on the usage itself."
"I rate the price of Databricks as eight out of ten."
"I would rate the tool’s pricing an eight out of ten."
"The cost for Databricks depends on the use case. I work on it as a consultant, so I'm using the client's Databricks, so it depends on how big the client is."
"The solution uses a pay-per-use model with an annual subscription fee or package. Typically this solution is used on a cloud platform, such as Azure or AWS, but more people are choosing Azure because the price is more reasonable."
"The price is okay. It's competitive."
"The licensing costs of Databricks depend on how many licenses we need, depending on which Databricks provides a lot of discounts."
"The billing of Databricks can be difficult and should improve."
"The product is cheap."
"It is affordable for us because we have a limited number of users."
"The pricing is quite reasonable, and I would give it a rating of four out of ten."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
849,686 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Computer Software Company
10%
Manufacturing Company
9%
Healthcare Company
6%
Financial Services Firm
21%
University
12%
Computer Software Company
10%
Manufacturing Company
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
What do you like most about Google Cloud Datalab?
Google Cloud Datalab is very customizable.
What needs improvement with Google Cloud Datalab?
Access is always via URL, and unless your network is fast, it would be a little tough in India. In India, if we had a faster network, it would be easier. In a big data environment, like when forcin...
What is your primary use case for Google Cloud Datalab?
It's for our daily data processing, and there's a batch job that executes it. The process involves more than ten servers or systems. Some of them use a mobile network, some are ONTAP networks, and ...
 

Also Known As

Databricks Unified Analytics, Databricks Unified Analytics Platform, Redash
No data available
 

Overview

 

Sample Customers

Elsevier, MyFitnessPal, Sharethrough, Automatic Labs, Celtra, Radius Intelligence, Yesware
Information Not Available
Find out what your peers are saying about Databricks vs. Google Cloud Datalab and other solutions. Updated: April 2025.
849,686 professionals have used our research since 2012.