Try our new research platform with insights from 80,000+ expert users

Azure Data Factory vs erwin Data Catalog comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Azure Data Factory
Average Rating
8.0
Reviews Sentiment
6.9
Number of Reviews
92
Ranking in other categories
Data Integration (1st), Cloud Data Warehouse (2nd)
erwin Data Catalog
Average Rating
7.6
Reviews Sentiment
5.1
Number of Reviews
2
Ranking in other categories
Metadata Management (15th)
 

Mindshare comparison

Azure Data Factory and erwin Data Catalog aren’t in the same category and serve different purposes. Azure Data Factory is designed for Data Integration and holds a mindshare of 5.6%, down 11.6% compared to last year.
erwin Data Catalog, on the other hand, focuses on Metadata Management, holds 3.0% mindshare, down 3.1% since last year.
Data Integration Market Share Distribution
ProductMarket Share (%)
Azure Data Factory5.6%
Informatica PowerCenter6.3%
SSIS5.9%
Other82.2%
Data Integration
Metadata Management Market Share Distribution
ProductMarket Share (%)
erwin Data Catalog3.0%
Informatica Intelligent Data Management Cloud (IDMC)21.0%
Alation Data Catalog15.5%
Other60.5%
Metadata Management
 

Featured Reviews

KandaswamyMuthukrishnan - PeerSpot reviewer
Integrates diverse data sources and streamlines ETL processes effectively
Regarding potential areas of improvement for Azure Data Factory, there is a need for better data transformation, especially since many people are now depending on DataBricks more for connectivity and data integration. Azure Data Factory should consider how to enhance integration or filtering for more transformations, such as integrating with Spark clusters. I am satisfied with Azure Data Factory so far, but I suggest integrating some AI functionality to analyze data during the transition itself, providing insights such as null records, common records, and duplicates without running a separate pipeline or job. The monitoring tools in Azure Data Factory are helpful for optimizing data pipelines; while the current feature is adequate, they can improve by creating a live dashboard to see the online process, including how much percentage has been completed, which will be very helpful for people who are monitoring the pipeline.
Andres-Martinez - PeerSpot reviewer
Helps with metadata management, saves time, and allows us to do impact analysis on any changes
There are always ways to improve things. For example, we can use AI to be able to find out something. When we are typing something, if we don't know the exact term, Artificial Intelligence would be useful to find terms that are phonetically or syntactically similar. Instead of having to type in the exact name, they can provide those in the list. So, they can provide AI support for the search because when you have thousands and thousands of terms, it is hard to remember all the names. There were some issues when drawing the data models. If you have more than 500 or 600 tables, it takes a long time to display those in the right position on the screen. That can also be improved. They need some caching and some parallel pipelines working on the backend in order to divide it into sections.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"This solution has provided us with an easier, and more efficient way to carry out data migration tasks."
"The trigger scheduling options are decently robust."
"It's cloud-based, allowing multiple users to easily access the solution from the office or remote locations. I like that we can set up the security protocols for IP addresses, like allow lists. It's a pretty user-friendly product as well. The interface and build environment where you create pipelines are easy to use. It's straightforward to manage the digital transformation pipelines we build."
"I like its integration with SQL pools, its ability to work with Databricks, its pipelines, and the serverless architecture are the most effective features."
"Data Factory's best features include its data source connections, GUI for building data pipelines, and target loading within Azure."
"It is very modular. It works well. We've used Data Factory and then made calls to libraries outside of Data Factory to do things that it wasn't optimized to do, and it worked really well. It is obviously proprietary in regards to Microsoft created it, but it is pretty easy and direct to bring in outside capabilities into Data Factory."
"We have found the bulk load feature very valuable."
"The most valuable feature is the copy activity."
"The data catalog feature is pretty good."
"When you combine it with data lineage, every time you need to make a change, it allows you to do impact analysis on any changes and then connect to the end-users or data stewards so that they can be aware that a change is coming. That's one of the main benefits we use it for."
 

Cons

"I rate Azure Data Factory six out of 10 for stability. ADF is stable now, but we had problems recently with indexing on an SQL database. It's slow when dealing with a huge volume of data. It depends on whether the database is configured as general purpose or hyperscale."
"They require more detailed error reporting, data normalization tools, easier connectivity to other services, more data services, and greater compatibility with other commonly used schemas."
"Sometimes I need to do some coding, and I'd like to avoid that. I'd like no-code integrations."
"Lacks in-built streaming data processing."
"The Microsoft documentation is too complicated."
"It does not appear to be as rich as other ETL tools. It has very limited capabilities."
"There's space for improvement in the development process of the data pipelines."
"My only problem is the seamless connectivity with various other databases, for example, SAP."
"There are always ways to improve things. For example, we can use AI to be able to find out something. When we are typing something, if we don't know the exact term, Artificial Intelligence would be useful to find terms that are phonetically or syntactically similar. Instead of having to type in the exact name, they can provide those in the list. So, they can provide AI support for the search because when you have thousands and thousands of terms, it is hard to remember all the names."
"There is room for improvement with respect to the connector and how to connect to the structured and unstructured database."
 

Pricing and Cost Advice

"I would not say that this product is overly expensive."
"There's no licensing for Azure Data Factory, they have a consumption payment model. How often you are running the service and how long that service takes to run. The price can be approximately $500 to $1,000 per month but depends on the scaling."
"Data Factory is expensive."
"The solution's fees are based on a pay-per-minute use plus the amount of data required to process."
"The pricing model is based on usage and is not cheap."
"Azure Data Factory gives better value for the price than other solutions such as Informatica."
"The solution is cheap."
"Pricing appears to be reasonable in my opinion."
"Erwin Data Catalog is very expensive."
"I am not very familiar with its pricing. I know it is not cheap, but it is also not super expensive. It depends on the company size. For a company making $1 million, it is very expensive. For a company making 10 million and above, it might be okay."
report
Use our free recommendation engine to learn which Data Integration solutions are best for your needs.
867,676 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
13%
Computer Software Company
12%
Manufacturing Company
9%
Government
7%
Financial Services Firm
15%
Government
10%
Manufacturing Company
9%
Non Profit
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business31
Midsize Enterprise19
Large Enterprise55
No data available
 

Questions from the Community

How do you select the right cloud ETL tool?
AWS Glue and Azure Data factory for ELT best performance cloud services.
How does Azure Data Factory compare with Informatica PowerCenter?
Azure Data Factory is flexible, modular, and works well. In terms of cost, it is not too pricey. It offers the stability and reliability I am looking for, good scalability, and is easy to set up an...
How does Azure Data Factory compare with Informatica Cloud Data Integration?
Azure Data Factory is a solid product offering many transformation functions; It has pre-load and post-load transformations, allowing users to apply transformations either in code by using Power Q...
Which ETL tool would you recommend to populate data from OLTP to OLAP?
There are two products I know about * TimeXtender : Microsoft based, Transformation logic is quiet good and can easily be extended with T-SQL , Has a semantic layer that generates metat data for cu...
 

Overview

 

Sample Customers

1. Adobe 2. BMW 3. Coca-Cola 4. General Electric 5. Johnson & Johnson 6. LinkedIn 7. Mastercard 8. Nestle 9. Pfizer 10. Samsung 11. Siemens 12. Toyota 13. Unilever 14. Verizon 15. Walmart 16. Accenture 17. American Express 18. AT&T 19. Bank of America 20. Cisco 21. Deloitte 22. ExxonMobil 23. Ford 24. General Motors 25. IBM 26. JPMorgan Chase 27. Microsoft (Azure Data Factory is developed by Microsoft) 28. Oracle 29. Procter & Gamble 30. Salesforce 31. Shell 32. Visa
Balfour Beatty Construction, Banco de México, BFSI Canada, CenturyLink, Daktronics
Find out what your peers are saying about Microsoft, Informatica, Talend and others in Data Integration. Updated: August 2025.
867,676 professionals have used our research since 2012.