Try our new research platform with insights from 80,000+ expert users

Amazon EMR vs Spark SQL comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon EMR
Ranking in Hadoop
3rd
Average Rating
7.8
Reviews Sentiment
7.2
Number of Reviews
23
Ranking in other categories
Cloud Data Warehouse (12th)
Spark SQL
Ranking in Hadoop
5th
Average Rating
7.8
Reviews Sentiment
7.6
Number of Reviews
14
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of June 2025, in the Hadoop category, the mindshare of Amazon EMR is 13.8%, down from 16.6% compared to the previous year. The mindshare of Spark SQL is 10.6%, down from 11.8% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Hadoop
 

Featured Reviews

Prashant  Singh - PeerSpot reviewer
Seamless data integration enhances reporting efficiency and an easy setup
Amazon EMR has multiple connectors that can connect to various data sources. The service charges are based on processing only, depending on the resources used, which can help save money. It is easy to integrate with other services for storage, allowing data to be shifted to cheaper storage based on usage.
SurjitChoudhury - PeerSpot reviewer
Offers the flexibility to handle large-scale data processing
My experience with the initial setup of Spark SQL was relatively smooth. Understanding the system wasn't overly difficult because the data was structured in databases, and we could use notebooks for coding in Python or Java. Configuring networks and running scripts to load data into the database were routine tasks that didn't pose significant challenges. The flexibility to use different languages for coding and the ability to process data using key-value pairs in Python made the setup adaptable. Once we received the source data, processing it in SparkSQL involved writing scripts to create dimension and fact tables, which became a standard part of our workflow. Setting up Spark SQL was reasonably quick, but sometimes we face performance issues, especially during data loading into the SQL Server data warehouse. Sequencing notebooks for efficient job runs is crucial, and managing complex tasks with multiple notebooks requires careful tracking. Exploring ways to optimize this process could be beneficial. However, once you are familiar with the database architecture and project tools, understanding and adapting to the system become more straightforward.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The solution is scalable."
"It has a variety of options and support systems."
"The ability to resize the cluster is what really makes it stand out over other Hadoop and big data solutions."
"The initial setup is pretty straightforward."
"Amazon EMR's most valuable features are processing speed and data storage capacity."
"The solution helps us manage huge volumes of data."
"We are using applications, such as Splunk, Livy, Hadoop, and Spark. We are using all of these applications in Amazon EMR and they're helping us a lot."
"One of the valuable features about this solution is that it's managed services, so it's pretty stable, and scalable as much as you wish. It has all the necessary distributions. With some additional work, it's also possible to change to a Spark version with the latest version of EMR. It also has Hudi, so we are leveraging Apache Hudi on EMR for change data capture, so then it comes out-of-the-box in EMR."
"The team members don't have to learn a new language and can implement complex tasks very easily using only SQL."
"Certain data sets that are very large are very difficult to process with Pandas and Python libraries. Spark SQL has helped us a lot with that."
"Data validation and ease of use are the most valuable features."
"Spark SQL's efficiency in managing distributed data and its simplicity in expressing complex operations make it an essential part of our data pipeline."
"This solution is useful to leverage within a distributed ecosystem."
"The solution is easy to understand if you have basic knowledge of SQL commands."
"The speed of getting data."
"It is a stable solution."
 

Cons

"The product must add some of the latest technologies to provide more flexibility to the users."
"The problem for us is it starts very slow."
"Modules and strategies should be better handled and notified early in advance."
"The legacy versions of the solution are not supported in the new versions."
"The product's features for storing data in static clusters could be better."
"The solution can become expensive if you are not careful."
"The most complicated thing is configuring to the cluster and ensure it's running correctly."
"The dashboard management could be better. Right now, it's lacking a bit."
"SparkUI could have more advanced versions of the performance and the queries and all."
"There are many inconsistencies in syntax for the different querying tasks."
"In the next update, we'd like to see better performance for small points of data. It is possible but there are better tools that are faster and cheaper."
"Being a new user, I am not able to find out how to partition it correctly. I probably need more information or knowledge. In other database solutions, you can easily optimize all partitions. I haven't found a quicker way to do that in Spark SQL. It would be good if you don't need a partition here, and the system automatically partitions in the best way. They can also provide more educational resources for new users."
"It takes a bit of time to get used to using this solution versus Pandas as it has a steep learning curve."
"In the next release, maybe the visualization of some command-line features could be added."
"It would be useful if Spark SQL integrated with some data visualization tools."
"Anything to improve the GUI would be helpful."
 

Pricing and Cost Advice

"I rate the tool's pricing a five out of ten. It can be expensive since it's a managed service, and if you are not careful, you can run into unexpected charges. You can make a mistake that costs you tens of thousands of dollars. That's happened to us twice, so I'm sensitive to it. We're still trying to work on that. Our smallest client probably spends a hundred thousand dollars yearly on licensing, while our largest is well over a million."
"The product is not cheap, but it is not expensive."
"Amazon EMR is not very expensive."
"Amazon EMR's price is reasonable."
"You don't need to pay for licensing on a yearly or monthly basis, you only pay for what you use, in terms of underlying instances."
"The price of the solution is expensive."
"There is no need to pay extra for third-party software."
"The cost of Amazon EMR is very high."
"The solution is open-sourced and free."
"There is no license or subscription for this solution."
"The solution is bundled with Palantir Foundry at no extra charge."
"The on-premise solution is quite expensive in terms of hardware, setting up the cluster, memory, hardware and resources. It depends on the use case, but in our case with a shared cluster which is quite large, it is quite expensive."
"We use the open-source version, so we do not have direct support from Apache."
"We don't have to pay for licenses with this solution because we are working in a small market, and we rely on open-source because the budgets of projects are very small."
report
Use our free recommendation engine to learn which Hadoop solutions are best for your needs.
856,873 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
26%
Computer Software Company
12%
Educational Organization
10%
Manufacturing Company
8%
Financial Services Firm
18%
Computer Software Company
14%
Retailer
10%
Healthcare Company
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Amazon EMR?
Amazon EMR is a good solution that can be used to manage big data.
What is your experience regarding pricing and costs for Amazon EMR?
Compared to others, Amazon seems efficient and is considered good for Big Data workloads. Costs are involved based on cluster resources, data volumes, EC2 ( /products/amazon-ec2-reviews ) instances...
What needs improvement with Amazon EMR?
There is room for improvement with respect to retries, handling the volume of data on S3 ( /products/amazon-s3-reviews ) buckets, cluster provisioning, scaling, termination, security, and integrati...
What do you like most about Spark SQL?
Spark SQL's efficiency in managing distributed data and its simplicity in expressing complex operations make it an essential part of our data pipeline.
What is your experience regarding pricing and costs for Spark SQL?
We don't have to pay for licenses with this solution because we are working in a small market, and we rely on open-source because the budgets of projects are very small.
What needs improvement with Spark SQL?
In terms of improvement, the only thing that could be enhanced is the stability aspect of Spark SQL. There could be additional features that I haven't explored but the current solution for working ...
 

Comparisons

 

Also Known As

Amazon Elastic MapReduce
No data available
 

Overview

 

Sample Customers

Yelp
UC Berkeley AMPLab, Amazon, Alibaba Taobao, Kenshoo, Hitachi Solutions
Find out what your peers are saying about Amazon EMR vs. Spark SQL and other solutions. Updated: June 2025.
856,873 professionals have used our research since 2012.