Try our new research platform with insights from 80,000+ expert users

Altair RapidMiner vs Google Cloud Datalab comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Mar 4, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Altair RapidMiner
Ranking in Data Science Platforms
7th
Average Rating
8.6
Reviews Sentiment
7.0
Number of Reviews
24
Ranking in other categories
Predictive Analytics (3rd)
Google Cloud Datalab
Ranking in Data Science Platforms
16th
Average Rating
7.8
Reviews Sentiment
6.4
Number of Reviews
6
Ranking in other categories
Data Visualization (18th)
 

Mindshare comparison

As of May 2025, in the Data Science Platforms category, the mindshare of Altair RapidMiner is 7.9%, up from 6.8% compared to the previous year. The mindshare of Google Cloud Datalab is 1.0%, down from 1.2% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Laurence Moseley - PeerSpot reviewer
Offers good tutorials that make it easy to learn and use, with a powerful feature to compare machine learning algorithms
When I started using RapidMiner, I found it difficult to get it to read the metadata. I wanted to use, for example, a pivot table, and it did not have the variable or the attribute names in it. There were no values. It took a long while to figure out how to do that, although it tends to do it automatically nowadays. RapidMiner is not utterly intuitive for beginners. Sometimes people have trouble distinguishing between a file in their own file system and a repository entry, and they cannot find their data. This is an area where this solution could be improved. It would be helpful to have some tutorials on communicating with Python. I found it a bit difficult at times to figure out which particular variable, or attribute, is going where in Python. It is probably a simple thing to do but I haven't mastered it yet. I'd like them to do a video on that. There are a large number of videos that are usually well-produced, but I don't think that they have one on that. Essentially, I would like to see how to communicate from RapidMiner to Python and from Python to RapidMiner. One of the things I do a lot of is looking at questionnaires where people have used Likert-type scales. I don't recommend Likert-type scales, but if they're properly produced, which is a lot of hard work and it's not usually done, they're really powerful and you can do things like normalizing holes on the Likert scale. That's not the same as normalizing your data in RapidMiner. So, I would want to get results with these Likert scales, pass it through RapidMiner, do a normalization and pass back both the raw scores and the normalized scores and put in some rules, which will say if it's high on the raw score and on the normalized score and low on the standard deviation, then you can trust it.
Nilesh Gode - PeerSpot reviewer
Easy to setup, stable and easy to design data pipelines
The scalability is average. We have not faced any issues with scalability. There are more than 500 end users using this solution in our company. It is an integral part of the daily operations. The usage pattern is not a one-time thing; employees regularly access and utilize the application. We use it at a global level with a scattered user base. This means that users don't all use the application at the same time. So, around 300 out of 500 employees use the solution, and this usage is spread out throughout the day.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"RapidMiner is a no-code machine learning tool. I can install it on my local machine and work with smaller datasets. It can also connect to databases, allowing me to build models directly on the data stored there. RapidMiner offers a wider range of operators than other tools like Dataiku, making it a better option for my needs."
"What I like about RapidMiner is its all-in-one nature, which allows me to prepare, extract, transform, and load data within the same tool."
"I like not having to write all solutions from code. Being able to drag and drop controls, enables me to focus on building the best model, without needing to search for syntax errors or extra libraries."
"The solution is stable."
"One of the most valuable features is the built-in data tuning feature. Once the model is built, we often struggle to increase its accuracy, but RapidMiner allows us to fine-tune variables. For Example, when working on a project, we can adjust the number of nodes or the depth of trees to see how accuracy changes. This flexibility lets us achieve higher accuracy compared to traditional automated machine-learning models"
"I've been using a lot of components from the Strategic Extension and Python Extension."
"The data science, collaboration, and IDN are very, very strong."
"It's helpful if you want to make informed decisions using data. We can take the information, tease out the attributes, and label everything. It's suitable for profiling and forecasting in any industry."
"Google Cloud Datalab is very customizable."
"The infrastructure is highly reliable and efficient, contributing to a positive experience."
"All of the features of this product are quite good."
"The APIs are valuable."
"For me, it has been a stable product."
"In MLOps, when we are designing the data pipeline, the designing of the data pipeline is easy in Google Cloud."
 

Cons

"The server product has been getting updated and continues to be better each release. When I started using RapidMiner, it was solid but not easy to set up and upgrade."
"In terms of the UI and SaaS, the user interface with KNIME is more appealing than RapidMiner."
"Many things in the interface look nice, but they aren't of much use to the operator. It already has lots of variables in there."
"RapidMiner would be improved with the inclusion of more machine learning algorithms for generating time-series forecasting models."
"The visual interface could use something like the-drag-and-drop features which other products already support. Some additional features can make RapidMiner a better tool and maybe more competitive."
"The biggest problem, not from a platform process, but from an avoidance process, is when you work in a heavily regulated environment, like banking and finance. Whenever you make a decision or there is an output, you need to bill it as an avoidance to the investigator or to the bank audit team. If you made decisions within this machine learning model, you need to explain why you did so. It would better if you could explain your decision in terms of delivery. However, this is an issue with all ML platforms. Many companies are working heavily in this area to help figure out how to make it more explainable to the business team or the regulator."
"About twenty-five percent of my problems involve image processing, and I found RapidMiner lacking in this domain. While we work on OCR and similar tasks, RapidMiner hasn't been as engaged in that field as other models. Some other models also support email processing, but RapidMiner doesn't offer this feature."
"RapidMiner isn't cheap. It's a complete solution, but it's costly."
"There is room for improvement in the graphical user interface. So that the initial user would use it properly, that would be a good option."
"We have also encountered challenges during our transition period in terms of data control and segmentation. The management of each channel and data structure as it has its own unique characteristics requires very detailed and precise control. The allocation should be appropriate and the complexity increases due to the different time zones and geographic locations of our clients. The process usually involves migrating the existing database sets to gcp and ensure data integrity is maintained. This is the only challenge that we faced while navigating the integers of the solution and honestly it was an interesting and unique experience."
"The product must be made more user-friendly."
"Even if your application is always connected to its database, the processing can be cumbersome. It shouldn't be so complicated."
"Connectivity challenges for end-users, particularly when loading data, environments, and libraries, need to be addressed for an enhanced user experience."
"The interface should be more user-friendly."
 

Pricing and Cost Advice

"I'm not fully aware of RapidMiner's price because we had licenses provided, but from my analysis, it's moderately priced, not too high or too low. It's worth the investment."
"For the university, the cost of the solution is free for the students and teachers."
"I used an educational license for this solution, which is available free of charge."
"The client only has to pay the licensing costs. There are not any maintenance or hidden costs in addition to the license."
"Although we don't pay licensing fees because it is being used within the university, my understanding is that the cost is between $5,000 and $10,000 USD per year."
"It is affordable for us because we have a limited number of users."
"The pricing is quite reasonable, and I would give it a rating of four out of ten."
"The product is cheap."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
850,028 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
University
11%
Computer Software Company
11%
Educational Organization
10%
Financial Services Firm
9%
Financial Services Firm
21%
University
12%
Computer Software Company
10%
Manufacturing Company
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What do you like most about RapidMiner?
RapidMiner is a no-code machine learning tool. I can install it on my local machine and work with smaller datasets. It can also connect to databases, allowing me to build models directly on the dat...
What is your experience regarding pricing and costs for RapidMiner?
I started with a trial version. We are likely to purchase a license, which may offer additional features.
What needs improvement with RapidMiner?
Currently, I am unsure of all the AI features available in Altair RapidMiner, particularly advanced AI capabilities like neural networks and deep learning. It would be beneficial if the platform co...
What do you like most about Google Cloud Datalab?
Google Cloud Datalab is very customizable.
What needs improvement with Google Cloud Datalab?
Access is always via URL, and unless your network is fast, it would be a little tough in India. In India, if we had a faster network, it would be easier. In a big data environment, like when forcin...
What is your primary use case for Google Cloud Datalab?
It's for our daily data processing, and there's a batch job that executes it. The process involves more than ten servers or systems. Some of them use a mobile network, some are ONTAP networks, and ...
 

Overview

 

Sample Customers

PayPal, Deloitte, eBay, Cisco, Miele, Volkswagen
Information Not Available
Find out what your peers are saying about Altair RapidMiner vs. Google Cloud Datalab and other solutions. Updated: April 2025.
850,028 professionals have used our research since 2012.