Find out what your peers are saying about Apache, Cloudera, Amazon Web Services (AWS) and others in Hadoop.
Google's support team is good at resolving issues, especially with large data.
The fact that no interaction is needed shows their great support since I don't face issues.
Whenever we have issues, we can consult with Google.
I would rate how scalable AWS Lambda is a nine on a scale from 1 to 10, where 1 would be the lowest and 10 would be the highest level of scalability.
Google Cloud Dataflow has auto-scaling capabilities, allowing me to add different machine types based on pace and requirements.
Google Cloud Dataflow can handle large data processing for real-time streaming workloads as they grow, making it a good fit for our business.
As a team lead, I'm responsible for handling five to six applications, but Google Cloud Dataflow seems to handle our use case effectively.
MapReduce needs to perform numerous disk input and output operations, while Apache Spark can use memory to store and process data.
I have not encountered any issues with the performance of Dataflow, as it is stable and backed by Google services.
The job we built has not failed once over six to seven months.
The automatic scaling feature helps maintain stability.
Outside of Google Cloud Platform, it is problematic for others to use it and may require promotion as an actual technology.
I would like to see improvements in consistency and flexibility for schema design for NoSQL data stored in wide columns.
Dealing with a huge volume of data causes failure due to array size.
It is part of a package received from Google, and they are not charging us too high.
Not all solutions can make this data fast enough to be used, except for solutions such as Apache Spark Structured Streaming.
It supports multiple programming languages such as Java and Python, enabling flexibility without the need to learn something new.
We then perform data cleansing, including deduplications, schema standardizations, and filtering of invalid records.
The integration within Google Cloud Platform is very good.
Spark provides programmers with an application programming interface centered on a data structure called the resilient distributed dataset (RDD), a read-only multiset of data items distributed over a cluster of machines, that is maintained in a fault-tolerant way. It was developed in response to limitations in the MapReduce cluster computing paradigm, which forces a particular linear dataflowstructure on distributed programs: MapReduce programs read input data from disk, map a function across the data, reduce the results of the map, and store reduction results on disk. Spark's RDDs function as a working set for distributed programs that offers a (deliberately) restricted form of distributed shared memory
AWS Lambda is a compute service that lets you run code without provisioning or managing servers. AWS Lambda executes your code only when needed and scales automatically, from a few requests per day to thousands per second. You pay only for the compute time you consume - there is no charge when your code is not running. With AWS Lambda, you can run code for virtually any type of application or backend service - all with zero administration. AWS Lambda runs your code on a high-availability compute infrastructure and performs all of the administration of the compute resources, including server and operating system maintenance, capacity provisioning and automatic scaling, code monitoring and logging. All you need to do is supply your code in one of the languages that AWS Lambda supports (currently Node.js, Java, C# and Python).
You can use AWS Lambda to run your code in response to events, such as changes to data in an Amazon S3 bucket or an Amazon DynamoDB table; to run your code in response to HTTP requests using Amazon API Gateway; or invoke your code using API calls made using AWS SDKs. With these capabilities, you can use Lambda to easily build data processing triggers for AWS services like Amazon S3 and Amazon DynamoDB process streaming data stored in Amazon Kinesis, or create your own back end that operates at AWS scale, performance, and security.