Try our new research platform with insights from 80,000+ expert users

Azure Data Factory vs Dremio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 18, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Azure Data Factory
Ranking in Cloud Data Warehouse
3rd
Average Rating
8.0
Reviews Sentiment
6.9
Number of Reviews
90
Ranking in other categories
Data Integration (1st)
Dremio
Ranking in Cloud Data Warehouse
9th
Average Rating
8.6
Reviews Sentiment
7.1
Number of Reviews
8
Ranking in other categories
Data Science Platforms (9th)
 

Mindshare comparison

As of May 2025, in the Cloud Data Warehouse category, the mindshare of Azure Data Factory is 8.1%, down from 10.1% compared to the previous year. The mindshare of Dremio is 11.0%, up from 5.3% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Cloud Data Warehouse
 

Featured Reviews

Joy Maitra - PeerSpot reviewer
Facilitates seamless data pipeline creation with good analytics and and thorough monitoring
Azure Data Factory is a low code, no code platform, which is helpful. It provides many prebuilt functionalities that assist in building data pipelines. Also, it facilitates easy transformation with all required functionalities for analytics. Furthermore, it connects to different sources out-of-the-box, making integration much easier. The monitoring is very thorough, though a more readable version would be appreciable.
KamleshPant - PeerSpot reviewer
Solution offers quick data connection with an edge in computation
It's almost similar, yet it's better than Starburst in spinning up or connecting to the new source since it's on SaaS. It is a similar experience between the based application and cloud-based application. You just get the source, connect the data, get visualization, get connected, and do whatever you want. They say data reflection is one way where they do the caching and all that. Starburst also does the caching. In Starburst, you have a data product. Here, the data product comes from a reflection perspective. The y are working on a columnar memory map, columnar computation. That will have some edge in computation.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"I can do everything I want with SSIS and Azure Data Factory."
"The security of the agent that is installed on-premises is very good."
"I like how you can create your own pipeline in your space and reuse those creations. You can collaborate with other people who want to use your code."
"I like its integration with SQL pools, its ability to work with Databricks, its pipelines, and the serverless architecture are the most effective features."
"The most valuable feature is the ease in which you can create an ETL pipeline."
"When it comes to our business requirements, this solution has worked well for us. However, we have not stretched it to the limit."
"The flexibility that Azure Data Factory offers is great."
"I find the most valuable feature in Azure Data Factory to be its ability to handle large datasets."
"Overall, you can rate it as eight out of ten."
"Dremio is very easy to use for building queries."
"The most valuable feature of Dremio is it can sit on top of any other data storage, such as Amazon S3, Azure Data Factory, SGFS, or Hive. The memory competition is good. If you are running any kind of materialized view, you'd be running in memory."
"Dremio allows querying the files I have on my block storage or object storage."
"We primarily use Dremio to create a data framework and a data queue."
"It's almost similar, yet it's better than Starburst in spinning up or connecting to the new source since it's on SaaS."
"Dremio gives you the ability to create services which do not require additional resources and sterilization."
"Dremio enables you to manage changes more effectively than any other data warehouse platform. There are two things that come into play. One is data lineage. If you are looking at data in Dremio, you may want to know the source and what happened to it along the way or how it may have been transformed in the data pipeline to get to the point where you're consuming it."
 

Cons

"It would be better if it had machine learning capabilities."
"There are limitations when processing more than one GD file."
"There is a problem with the integration with third-party solutions, particularly with SAP."
"My only problem is the seamless connectivity with various other databases, for example, SAP."
"Azure Data Factory uses many resources and has issues with parallel workflows."
"Azure Data Factory's pricing in terms of utilization could be improved."
"Azure Data Factory could benefit from improvements in its monitoring capabilities to provide a more robust feature set. Enhancing the ease of deployment to higher environments within Azure DevOps would be beneficial, as the current process often requires extensive scripting and pipeline development. It is also known for the flexibility of the data flow feature, particularly in supporting more dynamic data-driven architectures. These enhancements would contribute to a more seamless and efficient workflow within GitLab."
"I rate Azure Data Factory six out of 10 for stability. ADF is stable now, but we had problems recently with indexing on an SQL database. It's slow when dealing with a huge volume of data. It depends on whether the database is configured as general purpose or hyperscale."
"We've faced a challenge with integrating Dremio and Databricks, specifically regarding authentication. It is not shaking hands very easily."
"They have an automated tool for building SQL queries, so you don't need to know SQL. That interface works, but it could be more efficient in terms of the SQL generated from those things. It's going through some growing pains. There is so much value in tools like these for people with no SQL experience. Over time, Dermio will make these capabilities more accessible to users who aren't database people."
"They need to have multiple connectors. Starburst is rich in connectors, however, they are lacking Salesforce connectivity as of today."
"It shows errors sometimes."
"I cannot use the recursive common table expression (CTE) in Dremio because the support page says it's currently unsupported."
"They need to have multiple connectors."
"Dremio takes a long time to execute large queries or the executing of correlated queries or nested queries. Additionally, the solution could improve if we could read data from the streaming pipelines or if it allowed us to create the ETL pipeline directly on top of it, similar to Snowflake."
"There are performance issues at times due to our limited experience with Dremio, and the fact that we are running it on single nodes using a community version."
 

Pricing and Cost Advice

"The pricing is a bit on the higher end."
"Data Factory is affordable."
"The price you pay is determined by how much you use it."
"Azure Data Factory gives better value for the price than other solutions such as Informatica."
"I don't see a cost; it appears to be included in general support."
"I rate the product price as six on a scale of one to ten, where one is low price and ten is high price."
"Product is priced at the market standard."
"In terms of licensing costs, we pay somewhere around S14,000 USD per month. There are some additional costs. For example, we would have to subscribe to some additional computing and for elasticity, but they are minimal."
"Right now the cluster costs approximately $200,000 per month and is based on the volume of data we have."
"Dremio is less costly competitively to Snowflake or any other tool."
report
Use our free recommendation engine to learn which Cloud Data Warehouse solutions are best for your needs.
850,028 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
14%
Computer Software Company
12%
Manufacturing Company
9%
Healthcare Company
7%
Financial Services Firm
31%
Computer Software Company
10%
Manufacturing Company
7%
Healthcare Company
4%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

How do you select the right cloud ETL tool?
AWS Glue and Azure Data factory for ELT best performance cloud services.
How does Azure Data Factory compare with Informatica PowerCenter?
Azure Data Factory is flexible, modular, and works well. In terms of cost, it is not too pricey. It offers the stability and reliability I am looking for, good scalability, and is easy to set up an...
How does Azure Data Factory compare with Informatica Cloud Data Integration?
Azure Data Factory is a solid product offering many transformation functions; It has pre-load and post-load transformations, allowing users to apply transformations either in code by using Power Q...
What do you like most about Dremio?
Dremio allows querying the files I have on my block storage or object storage.
What is your experience regarding pricing and costs for Dremio?
The licensing is very expensive. We need a license to scale as we are currently using the community version.
What needs improvement with Dremio?
They need to have multiple connectors. Starburst is rich in connectors, however, they are lacking Salesforce connectivity as of today. They don't have Salesforce connectivity. However, Starburst do...
 

Overview

 

Sample Customers

1. Adobe 2. BMW 3. Coca-Cola 4. General Electric 5. Johnson & Johnson 6. LinkedIn 7. Mastercard 8. Nestle 9. Pfizer 10. Samsung 11. Siemens 12. Toyota 13. Unilever 14. Verizon 15. Walmart 16. Accenture 17. American Express 18. AT&T 19. Bank of America 20. Cisco 21. Deloitte 22. ExxonMobil 23. Ford 24. General Motors 25. IBM 26. JPMorgan Chase 27. Microsoft (Azure Data Factory is developed by Microsoft) 28. Oracle 29. Procter & Gamble 30. Salesforce 31. Shell 32. Visa
UBS, TransUnion, Quantium, Daimler, OVH
Find out what your peers are saying about Azure Data Factory vs. Dremio and other solutions. Updated: April 2025.
850,028 professionals have used our research since 2012.