Try our new research platform with insights from 80,000+ expert users

Azure Data Factory vs dbt comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 19, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Azure Data Factory
Ranking in Data Integration
1st
Average Rating
8.0
Reviews Sentiment
7.0
Number of Reviews
91
Ranking in other categories
Cloud Data Warehouse (2nd)
dbt
Ranking in Data Integration
36th
Average Rating
7.6
Reviews Sentiment
7.4
Number of Reviews
2
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of August 2025, in the Data Integration category, the mindshare of Azure Data Factory is 7.4%, down from 11.9% compared to the previous year. The mindshare of dbt is 2.1%, up from 0.1% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Integration
 

Featured Reviews

Joy Maitra - PeerSpot reviewer
Facilitates seamless data pipeline creation with good analytics and and thorough monitoring
Azure Data Factory is a low code, no code platform, which is helpful. It provides many prebuilt functionalities that assist in building data pipelines. Also, it facilitates easy transformation with all required functionalities for analytics. Furthermore, it connects to different sources out-of-the-box, making integration much easier. The monitoring is very thorough, though a more readable version would be appreciable.
Ninad Magdum - PeerSpot reviewer
Developer-friendly and easy to use, but doesn't have many optimization options
We also use stored procedures and Talend. They are not replaced by dbt completely. We use dbt only for the transformation process. My recommendations would depend on an organization’s requirements and problems. I will recommend the tool to others. The product is developer-friendly. However, it is still dependent on the data warehouse for big data and optimization. It's just a SQL transformation tool. It doesn't have a lot of optimization options like Spark. It's a good tool for Snowflake. If it were only for Snowflake, I would have rated it an eight out of ten. However, there are other data platforms. Overall, I rate the tool a six and a half out of ten.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"It is beneficial that the solution is written with Spark as the back end."
"The data mapping and the ability to systematically derive data are nice features. It worked really well for the solution we had. It is visual, and it did the transformation as we wanted."
"Azure Data Factory is a low code, no code platform, which is helpful."
"For me, it was that there are dedicated connectors for different targets or sources, different data sources. For example, there is direct connector to Salesforce, Oracle Service Cloud, etcetera, and that was really helpful."
"The solution includes a feature that increases the number of processors used which makes it very powerful and adds to the scalability."
"Data Factory's best features include its data source connections, GUI for building data pipelines, and target loading within Azure."
"The overall performance is quite good."
"I like that it's a monolithic data platform. This is why we propose these solutions."
"The product is developer-friendly."
 

Cons

"Occasionally, there are problems within Microsoft itself that impacts the Data Factory and causes it to fail."
"The deployment should be easier."
"There should be a way that it can do switches, so if at any point in time I want to do some hybrid mode of making any data collections or ingestions, I can just click on a button."
"If the user interface was more user friendly and there was better error feedback, it would be helpful."
"Areas for improvement in Azure Data Factory include connectivity and integration. When you use integration runtime, whenever there's a failure, the backup process in Azure Data Factory takes time, so this is another area for improvement."
"The solution should offer better integration with Azure machine learning. We should be able to embed the cognitive services from Microsoft, for example as a web API. It should allow us to embed Azure machine learning in a more user-friendly way."
"Data Factory's performance during heavy data processing isn't great."
"Integration of data lineage would be a nice feature in terms of DevOps integration. It would make implementation for a company much easier. I'm not sure if that's already available or not. However, that would be a great feature to add if it isn't already there."
"The solution must add more Python-based implementations."
 

Pricing and Cost Advice

"In terms of licensing costs, we pay somewhere around S14,000 USD per month. There are some additional costs. For example, we would have to subscribe to some additional computing and for elasticity, but they are minimal."
"I would not say that this product is overly expensive."
"Data Factory is affordable."
"Pricing is comparable, it's somewhere in the middle."
"The price is fair."
"My company is on a monthly subscription for Azure Data Factory, but it's more of a pay-as-you-go model where your monthly invoice depends on how many resources you use. On a scale of one to five, pricing for Azure Data Factory is a four. It's just the usage fees my company pays monthly."
"The licensing is a pay-as-you-go model, where you pay for what you consume."
"I am aware of the pricing of Azure Data Factory, but I prefer not to disclose specific details."
"The solution’s pricing is affordable."
report
Use our free recommendation engine to learn which Data Integration solutions are best for your needs.
864,155 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
14%
Computer Software Company
12%
Manufacturing Company
9%
Government
6%
Financial Services Firm
14%
Insurance Company
12%
Computer Software Company
6%
Manufacturing Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

How do you select the right cloud ETL tool?
AWS Glue and Azure Data factory for ELT best performance cloud services.
How does Azure Data Factory compare with Informatica PowerCenter?
Azure Data Factory is flexible, modular, and works well. In terms of cost, it is not too pricey. It offers the stability and reliability I am looking for, good scalability, and is easy to set up an...
How does Azure Data Factory compare with Informatica Cloud Data Integration?
Azure Data Factory is a solid product offering many transformation functions; It has pre-load and post-load transformations, allowing users to apply transformations either in code by using Power Q...
What is your experience regarding pricing and costs for dbt?
It is cheap because dbt is open source. If you compare the pay-per-service of Dbt with the open source option you can manage. We are managing the solution, when we were acquiring service from them....
What needs improvement with dbt?
SQL statements that beyond DML, are not possible. Currently, they are not possible in Dbt. Having more features in SQL statements will support us. Another issue is the terms of data ingestion becau...
What is your primary use case for dbt?
We use the solution to deal with data transformations inside different organizations.
 

Overview

 

Sample Customers

1. Adobe 2. BMW 3. Coca-Cola 4. General Electric 5. Johnson & Johnson 6. LinkedIn 7. Mastercard 8. Nestle 9. Pfizer 10. Samsung 11. Siemens 12. Toyota 13. Unilever 14. Verizon 15. Walmart 16. Accenture 17. American Express 18. AT&T 19. Bank of America 20. Cisco 21. Deloitte 22. ExxonMobil 23. Ford 24. General Motors 25. IBM 26. JPMorgan Chase 27. Microsoft (Azure Data Factory is developed by Microsoft) 28. Oracle 29. Procter & Gamble 30. Salesforce 31. Shell 32. Visa
Information Not Available
Find out what your peers are saying about Azure Data Factory vs. dbt and other solutions. Updated: July 2025.
864,155 professionals have used our research since 2012.