Try our new research platform with insights from 80,000+ expert users

Apache Spark vs HPE Ezmeral Data Fabric comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Spark
Ranking in Hadoop
1st
Average Rating
8.4
Reviews Sentiment
7.3
Number of Reviews
67
Ranking in other categories
Compute Service (4th), Java Frameworks (2nd)
HPE Ezmeral Data Fabric
Ranking in Hadoop
4th
Average Rating
8.0
Reviews Sentiment
6.1
Number of Reviews
12
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of August 2025, in the Hadoop category, the mindshare of Apache Spark is 19.2%, down from 20.2% compared to the previous year. The mindshare of HPE Ezmeral Data Fabric is 14.8%, up from 13.2% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Hadoop
 

Featured Reviews

Omar Khaled - PeerSpot reviewer
Empowering data consolidation and fast decision-making with efficient big data processing
I can improve the organization's functions by taking less time to make decisions. To make the right decision, you need the right data, and a solution can provide this by hiring talent and employees who can consolidate data from different sources and organize it. Not all solutions can make this data fast enough to be used, except for solutions such as Apache Spark Structured Streaming. To make the right decision, you should have both accurate and fast data. Apache Spark itself is similar to the Python programming language. Python is a language with many libraries for mathematics and machine learning. Apache Spark is the solution, and within it, you have PySpark, which is the API for Apache Spark to write and run Python code. Within it, there are many APIs, including SQL APIs, allowing you to write SQL code within a Python function in Apache Spark. You can also use Apache Spark Structured Streaming and machine learning APIs.
Hamid M. Hamid - PeerSpot reviewer
A stable and scalable tool that serves as a great database
The initial setup of HPE Ezmeral Data Fabric is easy. I am not sure how long it took to deploy HPE Ezmeral Data Fabric, but I haven't heard about any disadvantages when it comes to the time taken for the deployment. I remember that one of our company's clients who had purchased the product never mentioned the product's setup phase being complex. One of the drawbacks with HPE Ezmeral Data Fabric stems from the fact that the product's upgrade was not straightforward, and it was a complex process since one of the teams in my company who deals with the tool found the upgrade part to be tough. The solution is deployed on an on-premises model. My company has two dedicated staff members to look after the deployment and maintenance phases of HPE Ezmeral Data Fabric.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The most significant advantage of Spark 3.0 is its support for DataFrame UDF Pandas UDF features."
"The good performance. The nice graphical management console. The long list of ML algorithms."
"One of the key features is that Apache Spark is a distributed computing framework. You can help multiple slaves and distribute the workload between them."
"The most valuable feature is the Fault Tolerance and easy binding with other processes like Machine Learning, graph analytics."
"The distribution of tasks, like the seamless map-reduce functionality, is quite impressive."
"We use it for ETL purposes as well as for implementing the full transformation pipelines."
"There's a lot of functionality."
"Its scalability and speed are very valuable. You can scale it a lot. It is a great technology for big data. It is definitely better than a lot of earlier warehouse or pipeline solutions, such as Informatica. Spark SQL is very compliant with normal SQL that we have been using over the years. This makes it easy to code in Spark. It is just like using normal SQL. You can use the APIs of Spark or you can directly write SQL code and run it. This is something that I feel is useful in Spark."
"My customers find the product cheaper compared to other solutions. The previous solution that we used did not have unified analytics like the runtime or the analog."
"The model creation was very interesting, especially with the libraries provided by the platform."
"I like the administration part."
"It is a stable solution...It is a scalable solution."
"HPE Ezmeral Data Fabric can be accessed from any namespace globally as you would access it from a machine using an NFS."
 

Cons

"The management tools could use improvement. Some of the debugging tools need some work as well. They need to be more descriptive."
"It would be beneficial to enhance Spark's capabilities by incorporating models that utilize features not traditionally present in its framework."
"When using Spark, users may need to write their own parallelization logic, which requires additional effort and expertise."
"The product could improve the user interface and make it easier for new users."
"It should support more programming languages."
"The main concern is the overhead of Java when distributed processing is not necessary."
"Apache Spark can improve the use case scenarios from the website. There is not any information on how you can use the solution across the relational databases toward multiple databases."
"I know there is always discussion about which language to write applications in and some people do love Scala. However, I don't like it."
"The deployment could be faster. I want more support for the data lake in the next release."
"Having the ability to extend the services provided by the platform to an API architecture, a micro-services architecture, could be very helpful."
"HPE Ezmeral Data Fabric is not compatible with third-party tools."
"The product is not user-friendly."
"Upgrading Ezmeral to a new version is a pain. They're trying to make the solution more container-friendly, so I think they're going in the right direction. The only problem we've had in the past was the upgrades. The process isn't smooth due to how the Red Hat operating system upgrades currently work."
 

Pricing and Cost Advice

"The solution is affordable and there are no additional licensing costs."
"We are using the free version of the solution."
"It is an open-source platform. We do not pay for its subscription."
"Apache Spark is an expensive solution."
"It is quite expensive. In fact, it accounts for almost 50% of the cost of our entire project."
"The product is expensive, considering the setup."
"Spark is an open-source solution, so there are no licensing costs."
"Considering the product version used in my company, I feel that the tool is not costly since the product is available for free."
"There is a need for my company to pay for the licensing costs of the solution."
"The tool's price is cheap and based on a usage basis. The solution's licensing costs are yearly and there are no extra costs."
"HPE is flexible with you if you are an existing customer. They offer different models that might be beneficial for your organization. It all depends on how you negotiate."
report
Use our free recommendation engine to learn which Hadoop solutions are best for your needs.
865,295 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
26%
Computer Software Company
10%
Manufacturing Company
7%
Comms Service Provider
7%
Financial Services Firm
19%
Computer Software Company
12%
Comms Service Provider
11%
Government
5%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Apache Spark?
We use Spark to process data from different data sources.
What is your experience regarding pricing and costs for Apache Spark?
Apache Spark is open-source, so it doesn't incur any charges.
What needs improvement with Apache Spark?
There is complexity when it comes to understanding the whole ecosystem, especially for beginners. I find it quite complex to understand how a Spark job is initiated, the roles of driver nodes, work...
What do you like most about HPE Ezmeral Data Fabric?
It is a stable solution...It is a scalable solution.
What needs improvement with HPE Ezmeral Data Fabric?
There are some drawbacks in HPE Ezmeral Data Fabric when it comes to the interoperability part. HPE Ezmeral Data Fabric is not compatible with third-party tools. For example, HPE Ezmeral Data Fabri...
What is your primary use case for HPE Ezmeral Data Fabric?
The main purpose of HPE Ezmeral Data Fabric for me is that it acts as a database. In my company, we store our data with the help of HPE Ezmeral Data Fabric. It is possible to use Spark engine with ...
 

Also Known As

No data available
MapR, MapR Data Platform
 

Overview

 

Sample Customers

NASA JPL, UC Berkeley AMPLab, Amazon, eBay, Yahoo!, UC Santa Cruz, TripAdvisor, Taboola, Agile Lab, Art.com, Baidu, Alibaba Taobao, EURECOM, Hitachi Solutions
Valence Health, Goodgame Studios, Pico, Terbium Labs, sovrn, Harte Hanks, Quantium, Razorsight, Novartis, Experian, Dentsu ix, Pontis Transitions, DataSong, Return Path, RAPP, HP
Find out what your peers are saying about Apache Spark vs. HPE Ezmeral Data Fabric and other solutions. Updated: July 2025.
865,295 professionals have used our research since 2012.