Try our new research platform with insights from 80,000+ expert users

Apache Spark vs HPE Ezmeral Data Fabric comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Spark
Ranking in Hadoop
2nd
Average Rating
8.4
Reviews Sentiment
6.9
Number of Reviews
67
Ranking in other categories
Compute Service (4th), Java Frameworks (2nd)
HPE Ezmeral Data Fabric
Ranking in Hadoop
4th
Average Rating
8.0
Reviews Sentiment
6.1
Number of Reviews
12
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of October 2025, in the Hadoop category, the mindshare of Apache Spark is 19.0%, up from 18.7% compared to the previous year. The mindshare of HPE Ezmeral Data Fabric is 14.4%, up from 13.4% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Hadoop Market Share Distribution
ProductMarket Share (%)
Apache Spark19.0%
HPE Ezmeral Data Fabric14.4%
Other66.6%
Hadoop
 

Featured Reviews

Omar Khaled - PeerSpot reviewer
Empowering data consolidation and fast decision-making with efficient big data processing
I can improve the organization's functions by taking less time to make decisions. To make the right decision, you need the right data, and a solution can provide this by hiring talent and employees who can consolidate data from different sources and organize it. Not all solutions can make this data fast enough to be used, except for solutions such as Apache Spark Structured Streaming. To make the right decision, you should have both accurate and fast data. Apache Spark itself is similar to the Python programming language. Python is a language with many libraries for mathematics and machine learning. Apache Spark is the solution, and within it, you have PySpark, which is the API for Apache Spark to write and run Python code. Within it, there are many APIs, including SQL APIs, allowing you to write SQL code within a Python function in Apache Spark. You can also use Apache Spark Structured Streaming and machine learning APIs.
Arnab Chatterjee - PeerSpot reviewer
It's flexible and easily accessible across multiple locations, but the upgrade process is complicated
Upgrading Ezmeral to a new version is a pain. They're trying to make the solution more container-friendly, so I think they're going in the right direction. The only problem we've had in the past was the upgrades. The process isn't smooth due to how the Red Hat operating system upgrades currently work. They're transforming their host stack to increase cloud readiness and edge compute capability. HPE is transitioning from a standard data-driven approach to one powered by AI analytics. That's something they have released very recently. I haven't tried that, but it will probably make things easier. The ability to adapt Ezmeral to the public cloud is probably missing. I've heard that they're getting leaner. However, it doesn't have a clear managed services offering for you if you want to deploy this stack on the cloud. That's a problem. This probably won't meet your needs if you require consistency across on-prem and the cloud. It's not Ezmeral's fault. None of the products would fit the bill. Cloud offerings are biased towards their own implementation. It's a general issue on most big data platforms. They're already working towards that, but it hasn't been released.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The product's deployment phase is easy."
"The good performance. The nice graphical management console. The long list of ML algorithms."
"The most valuable feature of Apache Spark is its memory processing because it processes data over RAM rather than disk, which is much more efficient and fast."
"Provides a lot of good documentation compared to other solutions."
"This solution provides a clear and convenient syntax for our analytical tasks."
"It is highly scalable, allowing you to efficiently work with extensive datasets that might be problematic to handle using traditional tools that are memory-constrained."
"ETL and streaming capabilities."
"I found the solution stable. We haven't had any problems with it."
"I like the administration part."
"It is a stable solution...It is a scalable solution."
"HPE Ezmeral Data Fabric can be accessed from any namespace globally as you would access it from a machine using an NFS."
"My customers find the product cheaper compared to other solutions. The previous solution that we used did not have unified analytics like the runtime or the analog."
"The model creation was very interesting, especially with the libraries provided by the platform."
 

Cons

"Apache Spark provides very good performance The tuning phase is still tricky."
"The management tools could use improvement. Some of the debugging tools need some work as well. They need to be more descriptive."
"The Spark solution could improve in scheduling tasks and managing dependencies."
"Apache Spark could improve the connectors that it supports. There are a lot of open-source databases in the market. For example, cloud databases, such as Redshift, Snowflake, and Synapse. Apache Spark should have connectors present to connect to these databases. There are a lot of workarounds required to connect to those databases, but it should have inbuilt connectors."
"From my perspective, the only thing that needs improvement is the interface, as it was not easily understandable."
"In data analysis, you need to take real-time data from different data sources. You need to process this in a subsecond, do the transformation in a subsecond, and all that."
"When using Spark, users may need to write their own parallelization logic, which requires additional effort and expertise."
"Its UI can be better. Maintaining the history server is a little cumbersome, and it should be improved. I had issues while looking at the historical tags, which sometimes created problems. You have to separately create a history server and run it. Such things can be made easier. Instead of separately installing the history server, it can be made a part of the whole setup so that whenever you set it up, it becomes available."
"Having the ability to extend the services provided by the platform to an API architecture, a micro-services architecture, could be very helpful."
"HPE Ezmeral Data Fabric is not compatible with third-party tools."
"Upgrading Ezmeral to a new version is a pain. They're trying to make the solution more container-friendly, so I think they're going in the right direction. The only problem we've had in the past was the upgrades. The process isn't smooth due to how the Red Hat operating system upgrades currently work."
"The product is not user-friendly."
"The deployment could be faster. I want more support for the data lake in the next release."
 

Pricing and Cost Advice

"The tool is an open-source product. If you're using the open-source Apache Spark, no fees are involved at any time. Charges only come into play when using it with other services like Databricks."
"It is quite expensive. In fact, it accounts for almost 50% of the cost of our entire project."
"Considering the product version used in my company, I feel that the tool is not costly since the product is available for free."
"Apache Spark is not too cheap. You have to pay for hardware and Cloudera licenses. Of course, there is a solution with open source without Cloudera."
"Apache Spark is open-source. You have to pay only when you use any bundled product, such as Cloudera."
"Apache Spark is an open-source solution, and there is no cost involved in deploying the solution on-premises."
"On the cloud model can be expensive as it requires substantial resources for implementation, covering on-premises hardware, memory, and licensing."
"Apache Spark is an expensive solution."
"There is a need for my company to pay for the licensing costs of the solution."
"The tool's price is cheap and based on a usage basis. The solution's licensing costs are yearly and there are no extra costs."
"HPE is flexible with you if you are an existing customer. They offer different models that might be beneficial for your organization. It all depends on how you negotiate."
report
Use our free recommendation engine to learn which Hadoop solutions are best for your needs.
869,883 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
26%
Computer Software Company
11%
Manufacturing Company
7%
Comms Service Provider
7%
Financial Services Firm
20%
Computer Software Company
12%
Comms Service Provider
11%
Government
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business27
Midsize Enterprise15
Large Enterprise32
By reviewers
Company SizeCount
Small Business4
Large Enterprise7
 

Questions from the Community

What do you like most about Apache Spark?
We use Spark to process data from different data sources.
What is your experience regarding pricing and costs for Apache Spark?
Apache Spark is open-source, so it doesn't incur any charges.
What needs improvement with Apache Spark?
Regarding Apache Spark, I have only used Apache Spark Structured Streaming, not the machine learning components. I am uncertain about specific improvements needed today. However, after five years, ...
What do you like most about HPE Ezmeral Data Fabric?
It is a stable solution...It is a scalable solution.
What needs improvement with HPE Ezmeral Data Fabric?
There are some drawbacks in HPE Ezmeral Data Fabric when it comes to the interoperability part. HPE Ezmeral Data Fabric is not compatible with third-party tools. For example, HPE Ezmeral Data Fabri...
What is your primary use case for HPE Ezmeral Data Fabric?
The main purpose of HPE Ezmeral Data Fabric for me is that it acts as a database. In my company, we store our data with the help of HPE Ezmeral Data Fabric. It is possible to use Spark engine with ...
 

Also Known As

No data available
MapR, MapR Data Platform
 

Overview

 

Sample Customers

NASA JPL, UC Berkeley AMPLab, Amazon, eBay, Yahoo!, UC Santa Cruz, TripAdvisor, Taboola, Agile Lab, Art.com, Baidu, Alibaba Taobao, EURECOM, Hitachi Solutions
Valence Health, Goodgame Studios, Pico, Terbium Labs, sovrn, Harte Hanks, Quantium, Razorsight, Novartis, Experian, Dentsu ix, Pontis Transitions, DataSong, Return Path, RAPP, HP
Find out what your peers are saying about Apache Spark vs. HPE Ezmeral Data Fabric and other solutions. Updated: September 2025.
869,883 professionals have used our research since 2012.