Try our new research platform with insights from 80,000+ expert users

Apache Spark vs HPE Data Fabric comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Spark
Ranking in Hadoop
2nd
Average Rating
8.4
Reviews Sentiment
6.9
Number of Reviews
67
Ranking in other categories
Compute Service (4th), Java Frameworks (2nd)
HPE Data Fabric
Ranking in Hadoop
4th
Average Rating
8.0
Reviews Sentiment
6.1
Number of Reviews
12
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of November 2025, in the Hadoop category, the mindshare of Apache Spark is 17.1%, down from 18.1% compared to the previous year. The mindshare of HPE Data Fabric is 14.6%, up from 13.5% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Hadoop Market Share Distribution
ProductMarket Share (%)
Apache Spark17.1%
HPE Data Fabric14.6%
Other68.3%
Hadoop
 

Featured Reviews

Omar Khaled - PeerSpot reviewer
Empowering data consolidation and fast decision-making with efficient big data processing
I can improve the organization's functions by taking less time to make decisions. To make the right decision, you need the right data, and a solution can provide this by hiring talent and employees who can consolidate data from different sources and organize it. Not all solutions can make this data fast enough to be used, except for solutions such as Apache Spark Structured Streaming. To make the right decision, you should have both accurate and fast data. Apache Spark itself is similar to the Python programming language. Python is a language with many libraries for mathematics and machine learning. Apache Spark is the solution, and within it, you have PySpark, which is the API for Apache Spark to write and run Python code. Within it, there are many APIs, including SQL APIs, allowing you to write SQL code within a Python function in Apache Spark. You can also use Apache Spark Structured Streaming and machine learning APIs.
Arnab Chatterjee - PeerSpot reviewer
It's flexible and easily accessible across multiple locations, but the upgrade process is complicated
Upgrading Ezmeral to a new version is a pain. They're trying to make the solution more container-friendly, so I think they're going in the right direction. The only problem we've had in the past was the upgrades. The process isn't smooth due to how the Red Hat operating system upgrades currently work. They're transforming their host stack to increase cloud readiness and edge compute capability. HPE is transitioning from a standard data-driven approach to one powered by AI analytics. That's something they have released very recently. I haven't tried that, but it will probably make things easier. The ability to adapt Ezmeral to the public cloud is probably missing. I've heard that they're getting leaner. However, it doesn't have a clear managed services offering for you if you want to deploy this stack on the cloud. That's a problem. This probably won't meet your needs if you require consistency across on-prem and the cloud. It's not Ezmeral's fault. None of the products would fit the bill. Cloud offerings are biased towards their own implementation. It's a general issue on most big data platforms. They're already working towards that, but it hasn't been released.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"We use it for ETL purposes as well as for implementing the full transformation pipelines."
"The deployment of the product is easy."
"I appreciate everything about the solution, not just one or two specific features. The solution is highly stable. I rate it a perfect ten. The solution is highly scalable. I rate it a perfect ten. The initial setup was straightforward. I recommend using the solution. Overall, I rate the solution a perfect ten."
"It's easy to prepare parallelism in Spark, run the solution with specific parameters, and get good performance."
"The scalability has been the most valuable aspect of the solution."
"Spark helps us reduce startup time for our customers and gives a very high ROI in the medium term."
"The good performance. The nice graphical management console. The long list of ML algorithms."
"The fault tolerant feature is provided."
"It is a stable solution...It is a scalable solution."
"HPE Ezmeral Data Fabric can be accessed from any namespace globally as you would access it from a machine using an NFS."
"My customers find the product cheaper compared to other solutions. The previous solution that we used did not have unified analytics like the runtime or the analog."
"I like the administration part."
"The model creation was very interesting, especially with the libraries provided by the platform."
 

Cons

"One limitation is that not all machine learning libraries and models support it."
"Apache Spark's GUI and scalability could be improved."
"Apache Spark is very difficult to use. It would require a data engineer. It is not available for every engineer today because they need to understand the different concepts of Spark, which is very, very difficult and it is not easy to learn."
"When you want to extract data from your HDFS and other sources then it is kind of tricky because you have to connect with those sources."
"They could improve the issues related to programming language for the platform."
"When you are working with large, complex tasks, the garbage collection process is slow and affects performance."
"There were some problems related to the product's compatibility with a few Python libraries."
"We are building our own queries on Spark, and it can be improved in terms of query handling."
"Upgrading Ezmeral to a new version is a pain. They're trying to make the solution more container-friendly, so I think they're going in the right direction. The only problem we've had in the past was the upgrades. The process isn't smooth due to how the Red Hat operating system upgrades currently work."
"HPE Ezmeral Data Fabric is not compatible with third-party tools."
"The product is not user-friendly."
"The deployment could be faster. I want more support for the data lake in the next release."
"Having the ability to extend the services provided by the platform to an API architecture, a micro-services architecture, could be very helpful."
 

Pricing and Cost Advice

"Since we are using the Apache Spark version, not the data bricks version, it is an Apache license version, the support and resolution of the bug are actually late or delayed. The Apache license is free."
"The product is expensive, considering the setup."
"They provide an open-source license for the on-premise version."
"Spark is an open-source solution, so there are no licensing costs."
"Apache Spark is not too cheap. You have to pay for hardware and Cloudera licenses. Of course, there is a solution with open source without Cloudera."
"We are using the free version of the solution."
"The tool is an open-source product. If you're using the open-source Apache Spark, no fees are involved at any time. Charges only come into play when using it with other services like Databricks."
"I did not pay anything when using the tool on cloud services, but I had to pay on the compute side. The tool is not expensive compared with the benefits it offers. I rate the price as an eight out of ten."
"There is a need for my company to pay for the licensing costs of the solution."
"HPE is flexible with you if you are an existing customer. They offer different models that might be beneficial for your organization. It all depends on how you negotiate."
"The tool's price is cheap and based on a usage basis. The solution's licensing costs are yearly and there are no extra costs."
report
Use our free recommendation engine to learn which Hadoop solutions are best for your needs.
872,922 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
27%
Computer Software Company
11%
Manufacturing Company
7%
Comms Service Provider
6%
Financial Services Firm
14%
Comms Service Provider
12%
Computer Software Company
12%
Performing Arts
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business27
Midsize Enterprise15
Large Enterprise32
By reviewers
Company SizeCount
Small Business4
Large Enterprise7
 

Questions from the Community

What do you like most about Apache Spark?
We use Spark to process data from different data sources.
What is your experience regarding pricing and costs for Apache Spark?
Apache Spark is open-source, so it doesn't incur any charges.
What needs improvement with Apache Spark?
Regarding Apache Spark, I have only used Apache Spark Structured Streaming, not the machine learning components. I am uncertain about specific improvements needed today. However, after five years, ...
Ask a question
Earn 20 points
 

Also Known As

No data available
MapR, MapR Data Platform
 

Overview

 

Sample Customers

NASA JPL, UC Berkeley AMPLab, Amazon, eBay, Yahoo!, UC Santa Cruz, TripAdvisor, Taboola, Agile Lab, Art.com, Baidu, Alibaba Taobao, EURECOM, Hitachi Solutions
Valence Health, Goodgame Studios, Pico, Terbium Labs, sovrn, Harte Hanks, Quantium, Razorsight, Novartis, Experian, Dentsu ix, Pontis Transitions, DataSong, Return Path, RAPP, HP
Find out what your peers are saying about Apache Spark vs. HPE Data Fabric and other solutions. Updated: November 2025.
872,922 professionals have used our research since 2012.