Try our new research platform with insights from 80,000+ expert users

Apache Spark Streaming vs IBM Streams comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Spark Streaming
Ranking in Streaming Analytics
7th
Average Rating
7.8
Reviews Sentiment
6.4
Number of Reviews
17
Ranking in other categories
No ranking in other categories
IBM Streams
Ranking in Streaming Analytics
22nd
Average Rating
8.2
Reviews Sentiment
7.2
Number of Reviews
5
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of October 2025, in the Streaming Analytics category, the mindshare of Apache Spark Streaming is 3.6%, up from 3.4% compared to the previous year. The mindshare of IBM Streams is 1.1%, up from 0.8% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics Market Share Distribution
ProductMarket Share (%)
Apache Spark Streaming3.6%
IBM Streams1.1%
Other95.3%
Streaming Analytics
 

Featured Reviews

Himansu Jena - PeerSpot reviewer
Efficient real-time data management and analysis with advanced features
There are various ways we can improve Apache Spark Streaming through best practices. The initial part requires attention to batch interval tuning, which helps small intervals in micro batches based on latency requirements and helps prevent back pressure. We can use data formats such as Parquet or ORC for storage that needs faster reads and leveraging feature predicate push-down optimizations. We can implement serialization which helps with any Kyro in terms of .NET or Java. We have boxing and unboxing serialization for XML and JSON for converting key-pair values stored in browser. We can also implement caching mechanisms for storing and recomputing multiple operations. We can use specified joins which help with smaller databases, and distributed joins can minimize users. We can implement project optimization memory for CPU efficiency, known as Tungsten. Additionally, load balancing, checkpointing, and schema evaluation are areas to consider based on performance and bottlenecks. We can use Bugzilla tools for tracking and Splunk to monitor the performance of process systems, utilization, and performance based on data frames or data sets.
Ahmed_Emad - PeerSpot reviewer
A solution for data pipelines but has connector limitations
We have used Kafka for seven years. IBM streams gives you many OOTB features that can boost the time-to-market, especially when it comes to reporting and monitoring for example. Confluent is recognized as one of the leaders in this space and the main reason for this is related to the complete vision of the platform also the large number of connectors. This gives the edge and competitive advatnage.
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
869,202 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
23%
Financial Services Firm
20%
Healthcare Company
6%
University
6%
Financial Services Firm
25%
Computer Software Company
21%
Government
11%
Comms Service Provider
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business9
Midsize Enterprise2
Large Enterprise7
No data available
 

Questions from the Community

What do you like most about Apache Spark Streaming?
Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows.
What needs improvement with Apache Spark Streaming?
I believe the downsides of Apache Spark Streaming are that it primarily supports structured data. Currently, in my organization, we require thousands of transcripts that need to be handled during l...
What is your primary use case for Apache Spark Streaming?
My use cases for Apache Spark Streaming were during my academics. During that time, I used Apache Spark Streaming to transmit data live from one source to another.
What is your experience regarding pricing and costs for IBM Streams?
The solution’s licenses pricing is different from one region to another region. I rate the solution’s pricing a seven out of ten.
What needs improvement with IBM Streams?
the limited number of connectors. This shall be overcome with work-arounds or eventually buying additional connectors to complete the solution.
What is your primary use case for IBM Streams?
We use the solution for data pipeline by modernizing the traditional ETL jobs done through advanced streaming. Another use case is building the g2g streaming platform, which facilitates data exchan...
 

Also Known As

Spark Streaming
IBM InfoSphere Streams
 

Overview

 

Sample Customers

UC Berkeley AMPLab, Amazon, Alibaba Taobao, Kenshoo, eBay Inc.
Globo TV, All England Lawn Tennis Club, CenterPoint Energy, Consolidated Communications Holdings, Darwin Ecosystem, Emory University Hospital, ICICI Securities, Irish Centre for Fetal and Neonatal Translational Research (INFANT), Living Roads, Mobileum, Optibus, Southern Ontario Smart Computing Innovation Platform (SOSCIP), University of Alberta, University of Montana, University of Ontario Institute of Technology, Wimbledon 2015
Find out what your peers are saying about Apache Spark Streaming vs. IBM Streams and other solutions. Updated: September 2025.
869,202 professionals have used our research since 2012.