Try our new research platform with insights from 80,000+ expert users

Apache Spark Streaming vs IBM Streams comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Spark Streaming
Ranking in Streaming Analytics
10th
Average Rating
8.0
Reviews Sentiment
7.4
Number of Reviews
11
Ranking in other categories
No ranking in other categories
IBM Streams
Ranking in Streaming Analytics
20th
Average Rating
8.2
Reviews Sentiment
7.2
Number of Reviews
5
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of June 2025, in the Streaming Analytics category, the mindshare of Apache Spark Streaming is 2.7%, down from 3.8% compared to the previous year. The mindshare of IBM Streams is 0.8%, down from 1.0% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

Oscar Estorach - PeerSpot reviewer
Versatile and flexible when dealing with large-scale data streams
What I like about Spark is its versatility in supporting multiple languages and that makes it my preferred choice for building scalable and efficient systems, whether it is hooking databases with web applications or handling large-scale data transformations. Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows. It works well in the cloud, and you can structure data using Databricks or Spark, providing flexibility for different projects. Spark Streaming's flexibility shines when dealing with large-scale data streams. It caters to different needs, offering real-time insights for tasks like online sales analytics. The ability to prioritize data streams is valuable, especially for monitoring competitor prices online.
Ahmed_Emad - PeerSpot reviewer
A solution for data pipelines but has connector limitations
We have used Kafka for seven years. IBM streams gives you many OOTB features that can boost the time-to-market, especially when it comes to reporting and monitoring for example. Confluent is recognized as one of the leaders in this space and the main reason for this is related to the complete vision of the platform also the large number of connectors. This gives the edge and competitive advatnage.
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
856,873 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
26%
Computer Software Company
21%
Manufacturing Company
6%
University
5%
Financial Services Firm
33%
Computer Software Company
20%
Government
7%
Healthcare Company
4%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What do you like most about Apache Spark Streaming?
Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows.
What needs improvement with Apache Spark Streaming?
We don't have enough experience to be judgmental about its flaws, as we've only used stable features like batch micro-batch. Integration poses no problem; however, I don't use some features and can...
What is your primary use case for Apache Spark Streaming?
We use Spark Streaming in a micro-batch region. It's not a full real-time system, but it offers high performance and low latency.
What is your experience regarding pricing and costs for IBM Streams?
The solution’s licenses pricing is different from one region to another region. I rate the solution’s pricing a seven out of ten.
What needs improvement with IBM Streams?
the limited number of connectors. This shall be overcome with work-arounds or eventually buying additional connectors to complete the solution.
What is your primary use case for IBM Streams?
We use the solution for data pipeline by modernizing the traditional ETL jobs done through advanced streaming. Another use case is building the g2g streaming platform, which facilitates data exchan...
 

Also Known As

Spark Streaming
IBM InfoSphere Streams
 

Overview

 

Sample Customers

UC Berkeley AMPLab, Amazon, Alibaba Taobao, Kenshoo, eBay Inc.
Globo TV, All England Lawn Tennis Club, CenterPoint Energy, Consolidated Communications Holdings, Darwin Ecosystem, Emory University Hospital, ICICI Securities, Irish Centre for Fetal and Neonatal Translational Research (INFANT), Living Roads, Mobileum, Optibus, Southern Ontario Smart Computing Innovation Platform (SOSCIP), University of Alberta, University of Montana, University of Ontario Institute of Technology, Wimbledon 2015
Find out what your peers are saying about Apache Spark Streaming vs. IBM Streams and other solutions. Updated: June 2025.
856,873 professionals have used our research since 2012.