Try our new research platform with insights from 80,000+ expert users

Apache Spark Streaming vs Google Cloud Dataflow comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Spark Streaming
Ranking in Streaming Analytics
8th
Average Rating
7.8
Reviews Sentiment
6.4
Number of Reviews
17
Ranking in other categories
No ranking in other categories
Google Cloud Dataflow
Ranking in Streaming Analytics
10th
Average Rating
8.0
Reviews Sentiment
7.1
Number of Reviews
14
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of January 2026, in the Streaming Analytics category, the mindshare of Apache Spark Streaming is 3.9%, up from 3.2% compared to the previous year. The mindshare of Google Cloud Dataflow is 4.5%, down from 7.8% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics Market Share Distribution
ProductMarket Share (%)
Apache Spark Streaming3.9%
Google Cloud Dataflow4.5%
Other91.6%
Streaming Analytics
 

Featured Reviews

Himansu Jena - PeerSpot reviewer
Sr Project Manager at Raj Subhatech
Efficient real-time data management and analysis with advanced features
There are various ways we can improve Apache Spark Streaming through best practices. The initial part requires attention to batch interval tuning, which helps small intervals in micro batches based on latency requirements and helps prevent back pressure. We can use data formats such as Parquet or ORC for storage that needs faster reads and leveraging feature predicate push-down optimizations. We can implement serialization which helps with any Kyro in terms of .NET or Java. We have boxing and unboxing serialization for XML and JSON for converting key-pair values stored in browser. We can also implement caching mechanisms for storing and recomputing multiple operations. We can use specified joins which help with smaller databases, and distributed joins can minimize users. We can implement project optimization memory for CPU efficiency, known as Tungsten. Additionally, load balancing, checkpointing, and schema evaluation are areas to consider based on performance and bottlenecks. We can use Bugzilla tools for tracking and Splunk to monitor the performance of process systems, utilization, and performance based on data frames or data sets.
Jana Polianskaja - PeerSpot reviewer
Data Engineer at Accenture
Build Scalable Data Pipelines with Apache Beam and Google Cloud Dataflow
As a data engineer, I find several features of Google Cloud Dataflow particularly valuable. The ability to test solutions locally using Direct Runner is crucial for development, allowing me to validate pipelines without incurring the costs of full Dataflow jobs. The unified programming model for both batch and streaming processing is exceptional - requiring only minor code adjustments to optimize for either mode. This flexibility extends to language support, with robust implementations in both Java and Python, allowing teams to leverage their existing expertise. The platform's comprehensive monitoring capabilities are another standout feature. The intuitive interface, Grafana integration, and extensive service connectivity make troubleshooting and performance tracking highly efficient. Furthermore, seamless integration with Google Cloud Composer (managed Airflow) enables sophisticated orchestration of data pipelines.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The platform’s most valuable feature for processing real-time data is its ability to handle continuous data streams."
"The solution is very stable and reliable."
"With Apache Spark Streaming, you can have multiple kinds of windows; depending on your use case, you can select either a tumbling window, a sliding window, or a static window to determine how much data you want to process at a single point of time."
"Apache Spark Streaming has features like checkpointing and Streaming API that are useful."
"As an open-source solution, using it is basically free."
"I appreciate Apache Spark Streaming's micro-batching capabilities; the watermarking functionality and related features are quite good."
"The solution is better than average and some of the valuable features include efficiency and stability."
"Apache Spark Streaming's most valuable feature is near real-time analytics. The developers can build APIs easily for a code-steaming pipeline. The solutions have an ecosystem of integration with other stock services."
"The most valuable features of Google Cloud Dataflow are the integration, it's very simple if you have the complete stack, which we are using. It is overall very easy to use, user-friendly friendly, and cost-effective if you know how to use it. The solution is very flexible for programmers, if you know how to do scripts or program in Python or any other language, it's extremely easy to use."
"The support team is good and it's easy to use."
"The solution allows us to program in any language we desire."
"I don't need a server running all the time while using the tool. It is also easy to setup. The product offers a pay-as-you-go service."
"It allows me to test solutions locally using runners like Direct Runner without having to start a Dataflow job, which can be costly."
"It is a scalable solution."
"The service is relatively cheap compared to other batch-processing engines."
"The product's installation process is easy...The tool's maintenance part is somewhat easy."
 

Cons

"While it is reliable, there are some issues with Apache Spark Streaming as it is not 100% reliable."
"The debugging aspect could use some improvement."
"There could be an improvement in the area of the user configuration section, it should be less developer-focused and more business user-focused."
"The initial setup is quite complex."
"The downside is when you have this the other way around in the columns, it becomes really hard to use."
"The solution itself could be easier to use."
"One improvement I would expect is real-time processing instead of micro-batch or near real-time."
"The cost and load-related optimizations are areas where the tool lacks and needs improvement."
"The deployment time could also be reduced."
"The solution's setup process could be more accessible."
"The authentication part of the product is an area of concern where improvements are required."
"Google Cloud Data Flow can improve by having full simple integration with Kafka topics. It's not that complicated, but it could improve a bit. The UI is easy to use but the experience could be better. There are other tools available that do a better job."
"Occasionally, dealing with a huge volume of data causes failure due to array size."
"Google Cloud Dataflow should include a little cost optimization."
"When I deploy the product in local errors, a lot of errors pop up which are not always caught. The solution's error logging is bad. It can take a lot of time to debug the errors. It needs to have better logs."
"I would like to see improvements in consistency and flexibility for schema design for NoSQL data stored in wide columns."
 

Pricing and Cost Advice

"People pay for Apache Spark Streaming as a service."
"On a scale from one to ten, where one is expensive, or not cost-effective, and ten is cheap, I rate the price a seven."
"I was using the open-source community version, which was self-hosted."
"Spark is an affordable solution, especially considering its open-source nature."
"On a scale from one to ten, where one is cheap, and ten is expensive, I rate Google Cloud Dataflow's pricing a four out of ten."
"Google Cloud Dataflow is a cheap solution."
"Google Cloud is slightly cheaper than AWS."
"The tool is cheap."
"The solution is not very expensive."
"The price of the solution depends on many factors, such as how they pay for tools in the company and its size."
"On a scale from one to ten, where one is cheap, and ten is expensive, I rate the solution's pricing a seven to eight out of ten."
"The solution is cost-effective."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
881,114 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
22%
Financial Services Firm
21%
University
7%
Healthcare Company
6%
Financial Services Firm
18%
Manufacturing Company
12%
Retailer
11%
Computer Software Company
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business9
Midsize Enterprise2
Large Enterprise7
By reviewers
Company SizeCount
Small Business3
Midsize Enterprise2
Large Enterprise10
 

Questions from the Community

What do you like most about Apache Spark Streaming?
Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows.
What needs improvement with Apache Spark Streaming?
One of the improvements we need is in Spark SQL and the machine learning library. I don't think there is too much to work on, but the issue is when we want to use machine learning, we always need t...
What is your primary use case for Apache Spark Streaming?
We work with Apache Spark Streaming for our project because we use that as one of the landing data sources, and we work with it to ensure we can get all of the data before it goes through our data ...
What do you like most about Google Cloud Dataflow?
The product's installation process is easy...The tool's maintenance part is somewhat easy.
What is your experience regarding pricing and costs for Google Cloud Dataflow?
Pricing is normal. It is part of a package received from Google, and they are not charging us too high.
What needs improvement with Google Cloud Dataflow?
It can be improved in several ways. The system could function in an automated fashion and provide suggestions based on past transactions to achieve better scalability. Implementing AI-based suggest...
 

Also Known As

Spark Streaming
Google Dataflow
 

Overview

 

Sample Customers

UC Berkeley AMPLab, Amazon, Alibaba Taobao, Kenshoo, eBay Inc.
Absolutdata, Backflip Studios, Bluecore, Claritics, Crystalloids, Energyworx, GenieConnect, Leanplum, Nomanini, Redbus, Streak, TabTale
Find out what your peers are saying about Apache Spark Streaming vs. Google Cloud Dataflow and other solutions. Updated: December 2025.
881,114 professionals have used our research since 2012.