Find out in this report how the two Streaming Analytics solutions compare in terms of features, pricing, service and support, easy of deployment, and ROI.
Returns depend on the application you deploy and the amount of benefits you are getting, which depends on how many applications you are deploying, what are the sorts of applications, and what are the requirements.
There is plenty of community support available online.
The Apache community provides support for the open-source version.
I would rate them eight if 10 was the best and one was the worst.
Customers have not faced issues with user growth or data streaming needs.
Apache Kafka is stable.
This feature of Apache Kafka has helped enhance our system stability when handling high volume data.
The performance angle is critical, and while it works in milliseconds, the goal is to move towards microseconds.
We are always trying to find the best configs, which is a challenge.
A more user-friendly interface and better management consoles with improved documentation could be beneficial.
Observability and monitoring are areas that could be enhanced.
The open-source version of Apache Kafka results in minimal costs, mainly linked to accessing documentation and limited support.
Its pricing is reasonable.
Apache Kafka is effective when dealing with large volumes of data flowing at high speeds, requiring real-time processing.
It allows the use of data in motion, allowing data to propagate from one source to another while it is in motion.
The impact of Apache Kafka's scalability features on my organization and data processing capabilities depends on how many messages each company wants to receive.
These features are important due to scalability and resiliency.
Apache Kafka is an open-source distributed streaming platform that serves as a central hub for handling real-time data streams. It allows efficient publishing, subscribing, and processing of data from various sources like applications, servers, and sensors.
Kafka's core benefits include high scalability for big data pipelines, fault tolerance ensuring continuous operation despite node failures, low latency for real-time applications, and decoupling of data producers from consumers.
Key features include topics for organizing data streams, producers for publishing data, consumers for subscribing to data, brokers for managing clusters, and connectors for easy integration with various data sources.
Large organizations use Kafka for real-time analytics, log aggregation, fraud detection, IoT data processing, and facilitating communication between microservices.
Apache Kafka on Confluent Cloud provides real-time data streaming with seamless integration, enhanced scalability, and efficient data processing, recognized for its real-time architecture, ease of use, and reliable multi-cloud operations while effectively managing large data volumes.
Apache Kafka on Confluent Cloud is designed to handle large-scale data operations across different cloud environments. It supports real-time data streaming, crucial for applications in transaction processing, change data capture, microservices, and enterprise data movement. Users benefit from features like schema registry and error handling, which ensure efficient and reliable operations. While the platform offers extensive connector support and reduced maintenance, there are areas requiring improvement, including better data analysis features, PyTRAN CDC integration, and cost-effective access to premium connectors. Migrating with Kubernetes and managing message states are areas for development as well. Despite these challenges, it remains a robust option for organizations seeking to distribute data effectively for analytics and real-time systems across industries like retail and finance.
What are the key features of Apache Kafka on Confluent Cloud?In industries like retail and finance, Apache Kafka on Confluent Cloud is implemented to manage real-time location tracking, event-driven systems, and enterprise-level data distribution. It aids in operations that require robust data streaming, such as CDC, log processing, and analytics data distribution, providing a significant edge in data management and operational efficiency.
We monitor all Streaming Analytics reviews to prevent fraudulent reviews and keep review quality high. We do not post reviews by company employees or direct competitors. We validate each review for authenticity via cross-reference with LinkedIn, and personal follow-up with the reviewer when necessary.