Try our new research platform with insights from 80,000+ expert users

Apache Hadoop vs Apache Spark comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Hadoop
Average Rating
7.8
Reviews Sentiment
6.7
Number of Reviews
40
Ranking in other categories
Data Warehouse (7th)
Apache Spark
Average Rating
8.4
Reviews Sentiment
7.7
Number of Reviews
66
Ranking in other categories
Hadoop (1st), Compute Service (4th), Java Frameworks (2nd)
 

Mindshare comparison

Apache Hadoop and Apache Spark aren’t in the same category and serve different purposes. Apache Hadoop is designed for Data Warehouse and holds a mindshare of 5.1%, down 5.6% compared to last year.
Apache Spark, on the other hand, focuses on Hadoop, holds 17.8% mindshare, down 21.4% since last year.
Data Warehouse
Hadoop
 

Q&A Highlights

it_user1272297 - PeerSpot reviewer
Apr 19, 2020
 

Featured Reviews

Sushil Arya - PeerSpot reviewer
Provides ease of integration with the IT workflow of a business
When working with Kafka, I saw that the data came in an incremental order. The incremental data processing part is still not very effective in Apache Hadoop. If the data is already there, it can be processed very effectively, especially if the data is coming in every second. If you want to know the location of some data every second, then such data is not processed effectively in Apache Hadoop. I can say that one of the features where improvements are required revolves around the licensing cost of the tool. If the tool can build some licensing structures in a pay-per-use manner, organizations can get the look and feel of Apache Hadoop. Apache Hadoop can offer a licensing structure of the product that can be seen as similar to how AWS operates. Apache Hadoop can look into the capability of processing incremental data. The tool's setup process can be a scope of improvement. Also, it is not very simple because while doing the setup, we need to do all the server settings, including port listing and firewall configurations. If we look at other products on the market, then they can be made simpler. There are certain shortcomings when it comes to the product's technical support part, making it an area where improvements are required. The time frame for the resolution is an area that needs to be improved. The overall communication part of the technical support team also needs improvement.
Ilya Afanasyev - PeerSpot reviewer
Reliable, able to expand, and handle large amounts of data well
We use batch processing. It works well with our formats and file versions. There's a lot of functionality. In our pipeline each hour, we make a copy of data from MongoDB, of the changes from MongoDB to some specific file. Each time pipeline copied all of the data, it would do it each time without changes to all of the tables. Tables have a lot of data, and in the last MongoDB version, there is a possibility to read only changed data. This reduced the cost and configuration of the cluster, and we saved about $150,000. The solution is scalable. It's a stable product.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Two valuable features are its scalability and parallel processing. There are jobs that cannot be done unless you have massively parallel processing."
"The most important feature is its ability to handle large volumes. Some of our customers have really large volumes, and it is capable of handling their data in terms of the core volume and daily incremental volume. So, its processing power and speed are most valuable."
"Its integration is Hadoop's best feature because that allows us to support different tools in a big data platform."
"They have integrated other tools as well, like Power BI and Oracle BI, both on Azure, for reporting. Oracle BI is difficult to integrate."
"It is a reliable product."
"Initially, with RDBMS alone, we had a lot of work and few servers running on-premise and on cloud for the PoC and incubation. With the use of Hadoop and ecosystem components and tools, and managing it in Amazon EC2, we have created a Big Data "lab" which helps us to centralize all our work and solutions into a single repository. This has cut down the time in terms of maintenance, development and, especially, data processing challenges."
"The most valuable feature is scalability and the possibility to work with major information and open source capability."
"One valuable feature is that we can download data."
"Apache Spark provides a very high-quality implementation of distributed data processing."
"I like Apache Spark's flexibility the most. Before, we had one server that would choke up. With the solution, we can easily add more nodes when needed. The machine learning models are also really helpful. We use them to predict energy theft and find infrastructure problems."
"It provides a scalable machine learning library."
"ETL and streaming capabilities."
"The most crucial feature for us is the streaming capability. It serves as a fundamental aspect that allows us to exert control over our operations."
"It is highly scalable, allowing you to efficiently work with extensive datasets that might be problematic to handle using traditional tools that are memory-constrained."
"There's a lot of functionality."
"The most significant advantage of Spark 3.0 is its support for DataFrame UDF Pandas UDF features."
 

Cons

"The problem with Apache Hadoop arose when the guys that originally set it up left the firm, and the group that later owned it didn't have enough technical resources to properly maintain it."
"From the Apache perspective or the open-source community, they need to add more capabilities to make life easier from a configuration and deployment perspective."
"The integration with Apache Hadoop with lots of different techniques within your business can be a challenge."
"The product's availability of comprehensive training materials could be improved for faster onboarding and skill development among team members."
"Hadoop lacks OLAP capabilities."
"Hadoop's security could be better."
"It needs better user interface (UI) functionalities."
"It requires a great deal of learning curve to understand. The overall Hadoop ecosystem has a large number of sub-products. There is ZooKeeper, and there are a whole lot of other things that are connected. In many cases, their functionalities are overlapping, and for a newcomer or our clients, it is very difficult to decide which of them to buy and which of them they don't really need. They require a consulting organization for it, which is good for organizations such as ours because that's what we do, but it is not easy for the end customers to gain so much knowledge and optimally use it."
"Stream processing needs to be developed more in Spark. I have used Flink previously. Flink is better than Spark at stream processing."
"There could be enhancements in optimization techniques, as there are some limitations in this area that could be addressed to further refine Spark's performance."
"From my perspective, the only thing that needs improvement is the interface, as it was not easily understandable."
"There were some problems related to the product's compatibility with a few Python libraries."
"Its UI can be better. Maintaining the history server is a little cumbersome, and it should be improved. I had issues while looking at the historical tags, which sometimes created problems. You have to separately create a history server and run it. Such things can be made easier. Instead of separately installing the history server, it can be made a part of the whole setup so that whenever you set it up, it becomes available."
"Apache Spark lacks geospatial data."
"When you want to extract data from your HDFS and other sources then it is kind of tricky because you have to connect with those sources."
"Apache Spark can improve the use case scenarios from the website. There is not any information on how you can use the solution across the relational databases toward multiple databases."
 

Pricing and Cost Advice

"​There are no licensing costs involved, hence money is saved on the software infrastructure​."
"The product is open-source, but some associated licensing fees depend on the subscription level."
"For any big enterprise the costs can be handled, and it is suitable for big enterprises because the scale of data is large. For medium and small enterprises, the tool is on the high-price side."
"If my company can use the cloud version of Apache Hadoop, particularly the cloud storage feature, it would be easier and would cost less because an on-premises deployment has a higher cost during storage, for example, though I don't know exactly how much Apache Hadoop costs."
"We just use the free version."
"It's reasonable, but there's room for improvement in cost-effectiveness."
"This is a low cost and powerful solution."
"Do take into consider that data storage and compute capacity scale differently and hence purchasing a "boxed" / 'all-in-one" solution (software and hardware) might not be the best idea."
"On the cloud model can be expensive as it requires substantial resources for implementation, covering on-premises hardware, memory, and licensing."
"They provide an open-source license for the on-premise version."
"Licensing costs can vary. For instance, when purchasing a virtual machine, you're asked if you want to take advantage of the hybrid benefit or if you prefer the license costs to be included upfront by the cloud service provider, such as Azure. If you choose the hybrid benefit, it indicates you already possess a license for the operating system and wish to avoid additional charges for that specific VM in Azure. This approach allows for a reduction in licensing costs, charging only for the service and associated resources."
"Spark is an open-source solution, so there are no licensing costs."
"I did not pay anything when using the tool on cloud services, but I had to pay on the compute side. The tool is not expensive compared with the benefits it offers. I rate the price as an eight out of ten."
"It is quite expensive. In fact, it accounts for almost 50% of the cost of our entire project."
"Apache Spark is an open-source solution, and there is no cost involved in deploying the solution on-premises."
"Apache Spark is an expensive solution."
report
Use our free recommendation engine to learn which Data Warehouse solutions are best for your needs.
849,686 professionals have used our research since 2012.
 

Answers from the Community

it_user1272297 - PeerSpot reviewer
Apr 19, 2020
Apr 19, 2020
I haven't used SQream personally. However, if you are only considering GPU based rdbms's please check the following https://hackernoon.com/which-gpu-database-is-right-for-me-6ceef6a17505
2 out of 4 answers
Russell Rothstein - PeerSpot reviewer
Jan 27, 2020
Morten, the most popular comparisons of SQream can be found here: https://www.itcentralstation.com/products/sqream-db-alternatives-and-competitors The top ones include Cassandra, MemSQL, MongoDB, and Vertica.
reviewer1219965 - PeerSpot reviewer
Jan 27, 2020
I haven't used SQream personally. However, if you are only considering GPU based rdbms's please check the following https://hackernoon.com/which-gpu-database-is-right-for-me-6ceef6a17505
 

Top Industries

By visitors reading reviews
Financial Services Firm
33%
Computer Software Company
11%
University
7%
Energy/Utilities Company
6%
Financial Services Firm
27%
Computer Software Company
13%
Manufacturing Company
8%
Comms Service Provider
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Apache Hadoop?
It's primarily open source. You can handle huge data volumes and create your own views, workflows, and tables. I can also use it for real-time data streaming.
What is your experience regarding pricing and costs for Apache Hadoop?
The product is open-source, but some associated licensing fees depend on the subscription level. While it might be free for students, organizations typically need to pay for their subscriptions. Th...
What needs improvement with Apache Hadoop?
The problem with Apache Hadoop arose when the guys that originally set it up left the firm, and the group that later owned it didn't have enough technical resources to properly maintain it. This wa...
What do you like most about Apache Spark?
We use Spark to process data from different data sources.
What is your experience regarding pricing and costs for Apache Spark?
Compared to other solutions like Doc DB, Spark is more costly due to the need for extensive infrastructure. It requires significant investment in infrastructure, which can be expensive. While cloud...
What needs improvement with Apache Spark?
The Spark solution could improve in scheduling tasks and managing dependencies. Spark alone cannot handle sequential tasks, requiring environments like Airflow scheduler or scripts. For instance, o...
 

Overview

 

Sample Customers

Amazon, Adobe, eBay, Facebook, Google, Hulu, IBM, LinkedIn, Microsoft, Spotify, AOL, Twitter, University of Maryland, Yahoo!, Cornell University Web Lab
NASA JPL, UC Berkeley AMPLab, Amazon, eBay, Yahoo!, UC Santa Cruz, TripAdvisor, Taboola, Agile Lab, Art.com, Baidu, Alibaba Taobao, EURECOM, Hitachi Solutions
Find out what your peers are saying about Snowflake Computing, Oracle, Teradata and others in Data Warehouse. Updated: April 2025.
849,686 professionals have used our research since 2012.