Try our new research platform with insights from 80,000+ expert users

IBM Cloud Pak for Data vs Upsolver comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

IBM Cloud Pak for Data
Ranking in Data Integration
26th
Average Rating
7.8
Reviews Sentiment
6.5
Number of Reviews
13
Ranking in other categories
Data Virtualization (3rd)
Upsolver
Ranking in Data Integration
40th
Average Rating
8.6
Reviews Sentiment
7.6
Number of Reviews
2
Ranking in other categories
Streaming Analytics (20th)
 

Mindshare comparison

As of October 2025, in the Data Integration category, the mindshare of IBM Cloud Pak for Data is 1.8%, up from 1.7% compared to the previous year. The mindshare of Upsolver is 0.4%, up from 0.1% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Integration Market Share Distribution
ProductMarket Share (%)
IBM Cloud Pak for Data1.8%
Upsolver0.4%
Other97.8%
Data Integration
 

Featured Reviews

Michelle Leslie - PeerSpot reviewer
Starts strong with data management capabilities but needs a demo database
What I would love to see is an end-to-end, almost a training demo database of some sort, where one of the biggest problems with data management is demonstrated. There are so many components to data management, and more often than not, people understand one thing really well. They may understand DataStage and how to move data around, but they do not see the impact of moving data incorrectly. They also do not see the impact of everyone understanding a piece of data in the same way. I would love Cloud Pak to come with a demo database that illustrates the different components of data management in a logical way, so I can see the whole picture instead of just the area I'm specializing in. It would be great if Cloud Pak, from a data modeling point of view, allowed us to import our PDMs, for example. It would be ideal to import and create business terms in Cloud Pak. The PEA would be great to create the technical data. The association between the business and the technical metadata could then be automated by pulling it through from your ACE models. The data modeling component is available in Cloud Pak. Additionally, when it comes to Cloud Pak, even though it has the NextGen DataStage built into it, there is Cloud Pak for data integration as well. Currently, I do not think we have a full enough understanding of how CP4D and CP4I can enhance each other.
Snehasish Das - PeerSpot reviewer
Allows for data to be moved across platforms and different data technologies
The most prominent feature of Upsolver is its function as an ETL tool, allowing data to be moved across platforms and different data technologies. Upsolver does this in a quick time, unlike traditional processes which are time-consuming. Additionally, it offers scalability for large volumes of data, with performance and ease of cloud-native integration.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"One of Cloud Pak's best features is the Watson Knowledge Catalog, which helps you implement data governance."
"Cloud Pak's most valuable features are IBM MQ, IBM App Connect, IBM API Connect, and ISPF."
"It is a scalable solution, and we have had no issues with its scalability in our company. I rate the solution's scalability a nine out of ten."
"You can model the data there, connect the data models with the business processes and create data lineage processes."
"Cloud Pak is a very, very, very good system."
"Scalability-wise, I rate the solution a nine or ten out of ten."
"The most valuable features are data virtualization and reporting."
"What I found most helpful in IBM Cloud Pak for Data is containerization, which means it's easy to shift and leave in terms of moving to other clouds. That's an advantage of IBM Cloud Pak for Data."
"It was easy to use and set up, with a nearly no-code interface that relied mostly on drag-and-drop functionality."
"The most prominent feature of Upsolver is its function as an ETL tool, allowing data to be moved across platforms and different data technologies."
"Customer service is excellent, and I would rate it between eight point five to nine out of ten."
 

Cons

"Cloud Pak would be improved with integration with cloud service providers like Cloudera."
"What I would love to see is an end-to-end, almost a training demo database of some sort, where one of the biggest problems with data management is demonstrated."
"The solution's catalog searching or map search needs to be improved."
"There is a solution that is part of IBM Cloud Pak for Data called Watson OpenScale. It is used to monitor the deployed models for the quality and fairness of the results. This is one area that needs a lot of improvement."
"The solution's user experience is an area that has room for improvement."
"One thing that bugs me is how much infrastructure Cloud Pak requires for the initial deployment. It doesn't allow you to start small. The smallest permitted deployment is too big. It's a huge problem that prevents us from implementing the solution in many scenarios."
"One challenge I'm facing with IBM Cloud Pak for Data is native features have been decommissioned, such as XML input and output. Too many changes have been made, and my company has around one hundred thousand mappings, so my team has been putting more effort into alternative ways to do things. Another area for improvement in IBM Cloud Pak for Data is that it's more complicated to shift from on-premise to the cloud. Other vendors provide secure agents that easily connect with your existing setup. Still, with IBM Cloud Pak for Data, you have to perform connection migration steps, upgrade to the latest version, etc., which makes it more complicated, especially as my company has XML-based mappings. Still, the XML input and output capabilities of IBM Cloud Pak for Data have been discontinued, so I'd like IBM to bring that back."
"The tool depends on the control plane, an OpenShift container platform utilized as an orchestration layer...So, we have communicated this issue to IBM and asked if it is feasible to adapt the solution to work on a Kubernetes platform that we support."
"There is room for improvement in query tuning."
"On the stability side, I would rate it seven out of ten. Using multiple cloud providers and data engineering technologies creates complexity, and managing different plugins is not always easy, but they are working on it."
"Upsolver excels in ETL and data aggregation, while ThoughtSpot is strong in natural language processing for querying datasets. Combining these tools can be very effective: Upsolver handles aggregation and ETL, and ThoughtSpot allows for natural language queries. There’s potential for highlighting these integrations in the future."
 

Pricing and Cost Advice

"The solution is expensive."
"Cloud Pak's cost is a little high."
"It's quite expensive."
"I don't have the exact licensing cost for IBM Cloud Pak for Data, as my company is still finalizing requirements, including monthly, yearly, and three-year licensing fees. Still, on a scale of one to five, I'd rate it a three because, compared to other vendors, it's more complicated."
"I think that this product is too expensive for smaller companies."
"IBM Cloud Pak for Data is expensive. If we include the training time and the machine learning, it's expensive. The cost of the execution is more reasonable."
"For the licensing of the solution, there is a yearly payment that needs to be made. Also, since it is expensive, cost-wise, I rate the solution an eight or nine out of ten."
"The solution's pricing is competitive with that of other vendors."
"Upsolver is affordable at approximately $225 per terabyte per year."
report
Use our free recommendation engine to learn which Data Integration solutions are best for your needs.
869,566 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
28%
Manufacturing Company
10%
Computer Software Company
9%
Government
6%
No data available
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business7
Large Enterprise8
No data available
 

Questions from the Community

What is your experience regarding pricing and costs for IBM Cloud Pak for Data?
The setup cost is very expensive. The cost depends on the pieces of the solution I'm using, how much data I have, and whether it's on the cloud or on-prem.
What needs improvement with IBM Cloud Pak for Data?
What I would love to see is an end-to-end, almost a training demo database of some sort, where one of the biggest problems with data management is demonstrated. There are so many components to data...
What is your primary use case for IBM Cloud Pak for Data?
My primary use case for Cloud Pak is that I am the reference Data steward for the Africa regions in the banks where I work. My main objective is to capture the reference data in Caltech or Data and...
What is your experience regarding pricing and costs for Upsolver?
Upsolver is affordable at approximately $225 per terabyte per year. Compared to what I know from others, it's cheaper than many other products.
What needs improvement with Upsolver?
There is room for improvement in query tuning. Upsolver could do a more in-depth analysis in employing machine power, such as CPU and memory, to enhance query performance. Furthermore, allocating C...
What is your primary use case for Upsolver?
I am working as a consultant and currently have my own consultancy services. I provide services to companies that are data-heavy and looking for data engineering solutions for their business needs....
 

Also Known As

Cloud Pak for Data
No data available
 

Overview

 

Sample Customers

Qatar Development Bank, GuideWell, Skanderborg Music Festival
Information Not Available
Find out what your peers are saying about IBM Cloud Pak for Data vs. Upsolver and other solutions. Updated: September 2025.
869,566 professionals have used our research since 2012.