Try our new research platform with insights from 80,000+ expert users

Apache Kafka vs Apache Spark Streaming comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Kafka
Ranking in Streaming Analytics
8th
Average Rating
8.2
Reviews Sentiment
6.9
Number of Reviews
89
Ranking in other categories
No ranking in other categories
Apache Spark Streaming
Ranking in Streaming Analytics
7th
Average Rating
7.8
Reviews Sentiment
6.4
Number of Reviews
17
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of October 2025, in the Streaming Analytics category, the mindshare of Apache Kafka is 3.7%, up from 2.0% compared to the previous year. The mindshare of Apache Spark Streaming is 3.6%, up from 3.4% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics Market Share Distribution
ProductMarket Share (%)
Apache Spark Streaming3.6%
Apache Kafka3.7%
Other92.7%
Streaming Analytics
 

Featured Reviews

Snehasish Das - PeerSpot reviewer
Data streaming transforms real-time data movement with impressive scalability
I worked with Apache Kafka for customers in the financial industry and OTT platforms. They use Kafka particularly for data streaming. Companies offering movie and entertainment as a service, similar to Netflix, use Kafka Apache Kafka offers unique data streaming. It allows the use of data in…
Himansu Jena - PeerSpot reviewer
Efficient real-time data management and analysis with advanced features
There are various ways we can improve Apache Spark Streaming through best practices. The initial part requires attention to batch interval tuning, which helps small intervals in micro batches based on latency requirements and helps prevent back pressure. We can use data formats such as Parquet or ORC for storage that needs faster reads and leveraging feature predicate push-down optimizations. We can implement serialization which helps with any Kyro in terms of .NET or Java. We have boxing and unboxing serialization for XML and JSON for converting key-pair values stored in browser. We can also implement caching mechanisms for storing and recomputing multiple operations. We can use specified joins which help with smaller databases, and distributed joins can minimize users. We can implement project optimization memory for CPU efficiency, known as Tungsten. Additionally, load balancing, checkpointing, and schema evaluation are areas to consider based on performance and bottlenecks. We can use Bugzilla tools for tracking and Splunk to monitor the performance of process systems, utilization, and performance based on data frames or data sets.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"I have seen a return on investment with this solution."
"valuable features relate to microservices architecture and working on KStream and KSQL DB as a microservices event bus."
"Apache Kafka is particularly valuable for stream data processing, handling transactions, managing high levels of transactions, and orchestrating stream mode data."
"For example, when you want to send a message to inform all your clients about a new feature, you can publish that message to a single topic in Apache Kafka. This allows all clients subscribed to that topic to receive the message. On the other hand, if you need to send billing information to a specific customer, you can publish that message on a topic dedicated to that customer. This message can then be sent as an SMS to the customer, allowing them to view it on their mobile device."
"I like Kafka's flexibility, stability, reliability, and robustness."
"It is easy to configure."
"Apache Kafka is very fast and stable."
"There are numerous possibilities that can be explored. While it may be challenging to fully comprehend the potential advantages, one key aspect is the ability to establish a proper sequence of events rather than simply dealing with a jumbled group of occurrences. These events possess their own timestamps, even if they were not initially provided with one, and are arranged in a chronological order that allows for a clear understanding of the progression of the events."
"By integrating Apache Spark Streaming, the data freshness rate, and latency have significantly improved from 24-hour batch processing to less than one minute, facilitating faster communication to downstream systems, aiding marketing campaigns."
"Apache Spark Streaming has features like checkpointing and Streaming API that are useful."
"The main benefits of Apache Spark Streaming include cost savings, time savings, and efficiency improvements about data storage."
"With Apache Spark Streaming's integration with Anaconda and Miniconda with Python, I interact with databases using data frames or data sets in micro versions and create solutions based on business expectations for decision-making, logistic regression, linear regression, or machine learning which provides image or voice record and graphical data for improved accuracy."
"It's the fastest solution on the market with low latency data on data transformations."
"The platform’s most valuable feature for processing real-time data is its ability to handle continuous data streams."
"Apache Spark Streaming's most valuable feature is near real-time analytics. The developers can build APIs easily for a code-steaming pipeline. The solutions have an ecosystem of integration with other stock services."
"The solution is very stable and reliable."
 

Cons

"There have been some challenges with monitoring Apache Kafka, as there are currently only a few production-grade solutions available, which are all under enterprise license and therefore not easily accessible. The speaker has not had access to any of these solutions and has instead relied on tools, such as Dynatrace, which do not provide sufficient insight into the Apache Kafka system. While there are other tools available, they do not offer the same level of real-time data as enterprise solutions."
"The solution should be easier to manage. It needs to improve its visualization feature in the next release."
"There is a lot of information available for the solution and it can be overwhelming to sort through."
"Something that could be improved is having an interface to monitor the consuming rate."
"The solution could always add a few more features to enhance its usage."
"Maintaining and configuring Apache Kafka can be challenging, especially when you want to fine-tune its behavior."
"Config management can be better. We are always trying to find the best configs, which is a challenge."
"One complexity that I faced with the tool stems from the fact that since it is not kind of a stand-alone application, it won't integrate with native cloud, like AWS or Azure."
"Monitoring is an area where they could definitely improve Apache Spark Streaming. When you have a streaming application, it generates numerous logs. After some time, the logs become meaningless because they're quite large and impossible to open."
"We would like to have the ability to do arbitrary stateful functions in Python."
"The problem is we need to use it in a certain manner. After that, we need to apply another pipeline for the machine learning processes, and that's what we work on."
"When dealing with various data types including COBOL, Excel, JSON, video, audio, and MPG files, challenges can arise with incomplete or missing values."
"The service structure of Apache Spark Streaming can improve. There are a lot of issues with memory management and latency. There is no real-time analytics. We recommend it for the use cases where there is a five-second latency, but not for a millisecond, an IOT-based, or the detection anomaly-based. Flink as a service is much better."
"Integrating event-level streaming capabilities could be beneficial."
"The initial setup is quite complex."
"When dealing with various data types including COBOL, Excel, JSON, video, audio, and MPG files, challenges can arise with incomplete or missing values."
 

Pricing and Cost Advice

"It's a premium product, so it is not price-effective for us."
"Apache Kafka is an open-source solution."
"Apache Kafka is free."
"When starting to look at a distributed message system, look for a cloud solution first. It is an easier entry point than an on-premises hardware solution."
"Apache Kafka is open-source and can be used free of charge."
"Apache Kafka is an open-sourced solution. There are fees if you want the support, and I would recommend it for enterprises. There are annual subscriptions available."
"It is approximately $600,000 USD."
"It's a bit cheaper compared to other Q applications."
"Spark is an affordable solution, especially considering its open-source nature."
"On a scale from one to ten, where one is expensive, or not cost-effective, and ten is cheap, I rate the price a seven."
"I was using the open-source community version, which was self-hosted."
"People pay for Apache Spark Streaming as a service."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
869,202 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
25%
Computer Software Company
12%
Manufacturing Company
8%
Retailer
5%
Computer Software Company
23%
Financial Services Firm
20%
Healthcare Company
6%
University
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business32
Midsize Enterprise18
Large Enterprise47
By reviewers
Company SizeCount
Small Business9
Midsize Enterprise2
Large Enterprise7
 

Questions from the Community

What are the differences between Apache Kafka and IBM MQ?
Apache Kafka is open source and can be used for free. It has very good log management and has a way to store the data used for analytics. Apache Kafka is very good if you have a high number of user...
What do you like most about Apache Kafka?
Apache Kafka is an open-source solution that can be used for messaging or event processing.
What is your experience regarding pricing and costs for Apache Kafka?
Its pricing is reasonable. It's not always about cost, but about meeting specific needs.
What do you like most about Apache Spark Streaming?
Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows.
What needs improvement with Apache Spark Streaming?
I believe the downsides of Apache Spark Streaming are that it primarily supports structured data. Currently, in my organization, we require thousands of transcripts that need to be handled during l...
What is your primary use case for Apache Spark Streaming?
My use cases for Apache Spark Streaming were during my academics. During that time, I used Apache Spark Streaming to transmit data live from one source to another.
 

Also Known As

No data available
Spark Streaming
 

Overview

 

Sample Customers

Uber, Netflix, Activision, Spotify, Slack, Pinterest
UC Berkeley AMPLab, Amazon, Alibaba Taobao, Kenshoo, eBay Inc.
Find out what your peers are saying about Apache Kafka vs. Apache Spark Streaming and other solutions. Updated: September 2025.
869,202 professionals have used our research since 2012.