

Find out in this report how the two Cloud Data Warehouse solutions compare in terms of features, pricing, service and support, easy of deployment, and ROI.
It's not structured support, which is why we don't use purely open-source projects without additional structured support.
I have been self-taught and I have been able to handle all my problems alone.
rating the customer support at ten points out of ten
I would rate their customer service pretty good on a scale of one to 10, as they gave me access to the platform on a grant.
It is a distributed file system and scales reasonably well as long as it is given sufficient resources.
It is a 10 out of 10 in terms of scalability.
The scalability is definitely good because we are migrating to the cloud since the computers on the premises or the big database we need are no longer enough.
Continuous management in the way of upgrades and technical management is necessary to ensure that it remains effective.
The problem with Apache Hadoop arose when the guys that originally set it up left the firm, and the group that later owned it didn't have enough technical resources to properly maintain it.
Troubleshooting requires opening each pipeline individually, which is time-consuming.
BigQuery is already integrating Gemini AI into the data extraction process directly in order to reduce costs.
In general, if I know SQL and start playing around, it will start making sense.
Being able to optimize the queries to data is critical. Otherwise, you could spend a fortune.
The price is perceived as expensive, rated at eight out of ten in terms of costliness.
Hadoop is a distributed file system, and it scales reasonably well provided you give it sufficient resources.
I assess Apache Hadoop's fault tolerance during hardware failures positively since we have hardware failover, which works without problems.
It is really fast because it can process millions of rows in just a matter of one or two seconds.
The features I find most valuable in this solution are the ability to run and handle large data sets in a very efficient way with multiple types of data, relational as SQL data.
BigQuery processes a substantial amount of data, whether in gigabytes or terabytes, swiftly producing desired data within one or two minutes.




| Company Size | Count | 
|---|---|
| Small Business | 14 | 
| Midsize Enterprise | 8 | 
| Large Enterprise | 21 | 
| Company Size | Count | 
|---|---|
| Small Business | 12 | 
| Midsize Enterprise | 9 | 
| Large Enterprise | 20 | 










BigQuery is an enterprise data warehouse that solves this problem by enabling super-fast SQL queries using the processing power of Google's infrastructure. ... You can control access to both the project and your data based on your business needs, such as giving others the ability to view or query your data.
We monitor all Cloud Data Warehouse reviews to prevent fraudulent reviews and keep review quality high. We do not post reviews by company employees or direct competitors. We validate each review for authenticity via cross-reference with LinkedIn, and personal follow-up with the reviewer when necessary.