Try our new research platform with insights from 80,000+ expert users

Apache Flink vs Cloudera DataFlow comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Flink
Ranking in Streaming Analytics
5th
Average Rating
7.8
Reviews Sentiment
6.9
Number of Reviews
18
Ranking in other categories
No ranking in other categories
Cloudera DataFlow
Ranking in Streaming Analytics
16th
Average Rating
7.4
Reviews Sentiment
6.5
Number of Reviews
5
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of August 2025, in the Streaming Analytics category, the mindshare of Apache Flink is 14.5%, up from 9.9% compared to the previous year. The mindshare of Cloudera DataFlow is 1.1%, down from 1.3% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

Aswini Atibudhi - PeerSpot reviewer
Enables robust real-time data processing but documentation needs refinement
Apache Flink is very powerful, but it can be challenging for beginners because it requires prior experience with similar tools and technologies, such as Kafka and batch processing. It's essential to have a clear foundation; hence, it can be tough for beginners. However, once they grasp the concepts and have examples or references, it becomes easier. Intermediate users who are integrating with Kafka or other sources may find it smoother. After setting up and understanding the concepts, it becomes quite stable and scalable, allowing for customization of jobs. Every software, including Apache Flink, has room for improvement as it evolves. One key area for enhancement is user-friendliness and the developer experience; improving documentation and API specifications is essential, as they can currently be verbose and complex. Debugging and local testing pose challenges for newcomers, particularly when learning about concepts such as time semantics and state handling. Although the APIs exist, they aren't intuitive enough. We also need to simplify operational procedures, such as developing tools and tuning Flink clusters, as these processes can be quite complex. Additionally, implementing one-click rollback for failures and improving state management during dynamic scaling while retaining the last states is vital, as the current large states pose scaling challenges.
Mohamed-Saied - PeerSpot reviewer
Efficient data integration and workflow scheduling elevate project performance
Cloudera DataFlow is used as an ETL or ELT solution within Cloudera's data pipeline. Our organization heavily relies on it for data ingestion, transformation, and warehousing. It is also used daily for operational tasks, and it integrates well within Cloudera's ecosystem for high performance and…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"It is user-friendly and the reporting is good."
"Apache Flink is meant for low latency applications. You take one event opposite if you want to maintain a certain state. When another event comes and you want to associate those events together, in-memory state management was a key feature for us."
"The ease of usage, even for complex tasks, stands out."
"The event processing function is the most useful or the most used function. The filter function and the mapping function are also very useful because we have a lot of data to transform. For example, we store a lot of information about a person, and when we want to retrieve this person's details, we need all the details. In the map function, we can actually map all persons based on their age group. That's why the mapping function is very useful. We can really get a lot of events, and then we keep on doing what we need to do."
"The setup was not too difficult."
"With Flink, it provides out-of-the-box checkpointing and state management. It helps us in that way. When Storm used to restart, sometimes we would lose messages. With Flink, it provides guaranteed message processing, which helped us. It also helped us with maintenance or restarts."
"Apache Flink offers a range of powerful configurations and experiences for development teams. Its strength lies in its development experience and capabilities."
"Apache Flink allows you to reduce latency and process data in real-time, making it ideal for such scenarios."
"Cloudera DataFlow is fully compatible with Cloudera's ecosystem and offers high efficiency through native connectors for various ecosystems."
"This solution is very scalable and robust."
"The initial setup was not so difficult"
"DataFlow's performance is okay."
"The most effective features are data management and analytics."
 

Cons

"There is a learning curve. It takes time to learn."
"PyFlink is not as fully featured as Python itself, so there are some limitations to what you can do with it."
"In a future release, they could improve on making the error descriptions more clear."
"We have a machine learning team that works with Python, but Apache Flink does not have full support for the language."
"Apache should provide more examples and sample code related to streaming to help me better adapt and utilize the tool."
"There are more libraries that are missing and also maybe more capabilities for machine learning."
"The solution could be more user-friendly."
"One way to improve Flink would be to enhance integration between different ecosystems. For example, there could be more integration with other big data vendors and platforms similar in scope to how Apache Flink works with Cloudera. Apache Flink is a part of the same ecosystem as Cloudera, and for batch processing it's actually very useful but for real-time processing there could be more development with regards to the big data capabilities amongst the various ecosystems out there."
"Although their workflow is pretty neat, it still requires a lot of transformation coding; especially when it comes to Python and other demanding programming languages."
"Cloudera DataFlow's UI interface could be enhanced significantly. Memory handling can also be improved to be better than it is today."
"It's an outdated legacy product that doesn't meet the needs of modern data analysts and scientists."
"It is not easy to use the R language. Though I don't know if it's possible, I believe it is possible, but it is not the best language for machine learning."
 

Pricing and Cost Advice

"This is an open-source platform that can be used free of charge."
"Apache Flink is open source so we pay no licensing for the use of the software."
"It's an open source."
"It's an open-source solution."
"The solution is open-source, which is free."
"DataFlow isn't expensive, but its value for money isn't great."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
865,384 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
22%
Computer Software Company
12%
Retailer
9%
Manufacturing Company
7%
University
19%
Computer Software Company
13%
Financial Services Firm
11%
Retailer
9%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What do you like most about Apache Flink?
The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. ...
What is your experience regarding pricing and costs for Apache Flink?
The solution is expensive. I rate the product’s pricing a nine out of ten, where one is cheap and ten is expensive.
What needs improvement with Apache Flink?
Apache should provide more examples and sample code related to streaming to help me better adapt and utilize the tool. There is a need for increased awareness and education, especially around best ...
What do you like most about Cloudera DataFlow?
The most effective features are data management and analytics.
What needs improvement with Cloudera DataFlow?
Cloudera DataFlow's UI interface could be enhanced significantly. Memory handling can also be improved to be better than it is today.
What is your primary use case for Cloudera DataFlow?
Cloudera DataFlow is used as an ETL or ELT solution within Cloudera's data pipeline. Our organization heavily relies on it for data ingestion, transformation, and warehousing. It is also used daily...
 

Also Known As

Flink
CDF, Hortonworks DataFlow, HDF
 

Overview

 

Sample Customers

LogRhythm, Inc., Inter-American Development Bank, Scientific Technologies Corporation, LotLinx, Inc., Benevity, Inc.
Clearsense
Find out what your peers are saying about Apache Flink vs. Cloudera DataFlow and other solutions. Updated: July 2025.
865,384 professionals have used our research since 2012.