Try our new research platform with insights from 80,000+ expert users

Apache Flink vs Cloudera DataFlow comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Flink
Ranking in Streaming Analytics
5th
Average Rating
7.8
Reviews Sentiment
6.9
Number of Reviews
18
Ranking in other categories
No ranking in other categories
Cloudera DataFlow
Ranking in Streaming Analytics
17th
Average Rating
7.4
Reviews Sentiment
6.5
Number of Reviews
5
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of October 2025, in the Streaming Analytics category, the mindshare of Apache Flink is 14.8%, up from 10.6% compared to the previous year. The mindshare of Cloudera DataFlow is 1.3%, down from 1.3% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics Market Share Distribution
ProductMarket Share (%)
Apache Flink14.8%
Cloudera DataFlow1.3%
Other83.9%
Streaming Analytics
 

Featured Reviews

Aswini Atibudhi - PeerSpot reviewer
Enables robust real-time data processing but documentation needs refinement
Apache Flink is very powerful, but it can be challenging for beginners because it requires prior experience with similar tools and technologies, such as Kafka and batch processing. It's essential to have a clear foundation; hence, it can be tough for beginners. However, once they grasp the concepts and have examples or references, it becomes easier. Intermediate users who are integrating with Kafka or other sources may find it smoother. After setting up and understanding the concepts, it becomes quite stable and scalable, allowing for customization of jobs. Every software, including Apache Flink, has room for improvement as it evolves. One key area for enhancement is user-friendliness and the developer experience; improving documentation and API specifications is essential, as they can currently be verbose and complex. Debugging and local testing pose challenges for newcomers, particularly when learning about concepts such as time semantics and state handling. Although the APIs exist, they aren't intuitive enough. We also need to simplify operational procedures, such as developing tools and tuning Flink clusters, as these processes can be quite complex. Additionally, implementing one-click rollback for failures and improving state management during dynamic scaling while retaining the last states is vital, as the current large states pose scaling challenges.
Mohamed-Saied - PeerSpot reviewer
Efficient data integration and workflow scheduling elevate project performance
Cloudera DataFlow is used as an ETL or ELT solution within Cloudera's data pipeline. Our organization heavily relies on it for data ingestion, transformation, and warehousing. It is also used daily for operational tasks, and it integrates well within Cloudera's ecosystem for high performance and…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"This is truly a real-time solution."
"It is user-friendly and the reporting is good."
"The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. We use Apache Flink to control our clients' installations."
"Easy to deploy and manage."
"The top feature of Apache Flink is its low latency for fast, real-time data. Another great feature is the real-time indicators and alerts which make a big difference when it comes to data processing and analysis."
"The event processing function is the most useful or the most used function. The filter function and the mapping function are also very useful because we have a lot of data to transform. For example, we store a lot of information about a person, and when we want to retrieve this person's details, we need all the details. In the map function, we can actually map all persons based on their age group. That's why the mapping function is very useful. We can really get a lot of events, and then we keep on doing what we need to do."
"Another feature is how Flink handles its radiuses. It has something called the checkpointing concept. You're dealing with billions and billions of requests, so your system is going to fail in large storage systems. Flink handles this by using the concept of checkpointing and savepointing, where they write the aggregated state into some separate storage. So in case of failure, you can basically recall from that state and come back."
"The ease of usage, even for complex tasks, stands out."
"This solution is very scalable and robust."
"Cloudera DataFlow is fully compatible with Cloudera's ecosystem and offers high efficiency through native connectors for various ecosystems."
"DataFlow's performance is okay."
"The initial setup was not so difficult"
"The most effective features are data management and analytics."
 

Cons

"Apache should provide more examples and sample code related to streaming to help me better adapt and utilize the tool."
"Apache Flink's documentation should be available in more languages."
"In terms of improvement, there should be better reporting. You can integrate with reporting solutions but Flink doesn't offer it themselves."
"We have a machine learning team that works with Python, but Apache Flink does not have full support for the language."
"The machine learning library is not very flexible."
"There is room for improvement in the initial setup process."
"PyFlink is not as fully featured as Python itself, so there are some limitations to what you can do with it."
"There is a learning curve. It takes time to learn."
"It is not easy to use the R language. Though I don't know if it's possible, I believe it is possible, but it is not the best language for machine learning."
"Although their workflow is pretty neat, it still requires a lot of transformation coding; especially when it comes to Python and other demanding programming languages."
"Cloudera DataFlow's UI interface could be enhanced significantly. Memory handling can also be improved to be better than it is today."
"It's an outdated legacy product that doesn't meet the needs of modern data analysts and scientists."
 

Pricing and Cost Advice

"Apache Flink is open source so we pay no licensing for the use of the software."
"This is an open-source platform that can be used free of charge."
"It's an open source."
"It's an open-source solution."
"The solution is open-source, which is free."
"DataFlow isn't expensive, but its value for money isn't great."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
869,202 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
22%
Retailer
11%
Computer Software Company
11%
Manufacturing Company
7%
University
24%
Computer Software Company
13%
Financial Services Firm
11%
Performing Arts
10%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business5
Midsize Enterprise3
Large Enterprise11
No data available
 

Questions from the Community

What do you like most about Apache Flink?
The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. ...
What is your experience regarding pricing and costs for Apache Flink?
The solution is expensive. I rate the product’s pricing a nine out of ten, where one is cheap and ten is expensive.
What needs improvement with Apache Flink?
Apache should provide more examples and sample code related to streaming to help me better adapt and utilize the tool. There is a need for increased awareness and education, especially around best ...
What do you like most about Cloudera DataFlow?
The most effective features are data management and analytics.
What needs improvement with Cloudera DataFlow?
Cloudera DataFlow's UI interface could be enhanced significantly. Memory handling can also be improved to be better than it is today.
What is your primary use case for Cloudera DataFlow?
Cloudera DataFlow is used as an ETL or ELT solution within Cloudera's data pipeline. Our organization heavily relies on it for data ingestion, transformation, and warehousing. It is also used daily...
 

Also Known As

Flink
CDF, Hortonworks DataFlow, HDF
 

Overview

 

Sample Customers

LogRhythm, Inc., Inter-American Development Bank, Scientific Technologies Corporation, LotLinx, Inc., Benevity, Inc.
Clearsense
Find out what your peers are saying about Apache Flink vs. Cloudera DataFlow and other solutions. Updated: September 2025.
869,202 professionals have used our research since 2012.