Try our new research platform with insights from 80,000+ expert users

Azure Data Factory vs Infogix Data360 Analyze [EOL] comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Azure Data Factory
Average Rating
8.0
Reviews Sentiment
6.8
Number of Reviews
93
Ranking in other categories
Data Integration (3rd), Cloud Data Warehouse (2nd)
Infogix Data360 Analyze [EOL]
Average Rating
7.0
Number of Reviews
1
Ranking in other categories
No ranking in other categories
 

Featured Reviews

KandaswamyMuthukrishnan - PeerSpot reviewer
Director at a computer software company with 1,001-5,000 employees
Integrates diverse data sources and streamlines ETL processes effectively
Regarding potential areas of improvement for Azure Data Factory, there is a need for better data transformation, especially since many people are now depending on DataBricks more for connectivity and data integration. Azure Data Factory should consider how to enhance integration or filtering for more transformations, such as integrating with Spark clusters. I am satisfied with Azure Data Factory so far, but I suggest integrating some AI functionality to analyze data during the transition itself, providing insights such as null records, common records, and duplicates without running a separate pipeline or job. The monitoring tools in Azure Data Factory are helpful for optimizing data pipelines; while the current feature is adequate, they can improve by creating a live dashboard to see the online process, including how much percentage has been completed, which will be very helpful for people who are monitoring the pipeline.
reviewer1321299 - PeerSpot reviewer
Data Analytics Consultant at velocity
Easy drag-and-drop interface and supports custom Python functions, but the performance needs to be better
The memory processing needs to be improved because when you deal with a large amount of data, the interface tends to hang a little bit. When the system boots up, it can take between two and five minutes, depending on the system memory (RAM). If the system is low on memory then it takes a long time to start up. If you are not familiar with Python then this product will be a little more difficult for you. It can take a long time to migrate from one version to the next because there are a lot of processes to deal with.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"What I like best about Azure Data Factory is that it allows you to create pipelines, specifically ETL pipelines. I also like that Azure Data Factory has connectors and solves most of my company's problems."
"The most valuable feature is the ease in which you can create an ETL pipeline."
"It is very modular. It works well. We've used Data Factory and then made calls to libraries outside of Data Factory to do things that it wasn't optimized to do, and it worked really well. It is obviously proprietary in regards to Microsoft created it, but it is pretty easy and direct to bring in outside capabilities into Data Factory."
"In terms of my personal experience, it works fine."
"The solution is okay."
"When it comes to our business requirements, this solution has worked well for us. However, we have not stretched it to the limit."
"I value the integration capabilities with other platforms and software in Azure Data Factory the most."
"The feature I found most helpful in Azure Data Factory is the pipeline feature, including being able to connect to different sources. Azure Data Factory also has built-in security, which is another valuable feature."
"The drag-and-drop functionality makes it easy for business users."
 

Cons

"It's a good idea to take a Microsoft course. Because they are really helpful when you start from your journey with Data Factory."
"There is room for improvement primarily in its streaming capabilities. For structured streaming and machine learning model implementation within an ETL process, it lags behind tools like Informatica."
"They should work on optimizing their licensing model and pricing structure."
"Some known bugs and issues with Azure Data Factory could be rectified."
"The initial setup is not very straightforward."
"Sometimes, the compute fails to process data if there is a heavy load suddenly, and it doesn't scale up automatically."
"The solution needs to integrate more with other providers and should have a closer integration with Oracle BI."
"We have experienced some issues with the integration. This is an area that needs improvement."
"The memory processing needs to be improved because when you deal with a large amount of data, the interface tends to hang a little bit."
 

Pricing and Cost Advice

"There's no licensing for Azure Data Factory, they have a consumption payment model. How often you are running the service and how long that service takes to run. The price can be approximately $500 to $1,000 per month but depends on the scaling."
"It's not particularly expensive."
"Our licensing fees are approximately 15,000 ($150 USD) per month."
"The pricing is pay-as-you-go or reserve instance. Of the two options, reserve instance is much cheaper."
"In terms of licensing costs, we pay somewhere around S14,000 USD per month. There are some additional costs. For example, we would have to subscribe to some additional computing and for elasticity, but they are minimal."
"ADF is cheaper compared to AWS."
"The price you pay is determined by how much you use it."
"I am aware of the pricing of Azure Data Factory, but I prefer not to disclose specific details."
"The open-source version is free to use, although it has a limitation of two-million records."
report
Use our free recommendation engine to learn which Data Integration solutions are best for your needs.
882,032 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
13%
Computer Software Company
11%
Manufacturing Company
9%
Government
6%
No data available
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business31
Midsize Enterprise19
Large Enterprise57
No data available
 

Questions from the Community

How do you select the right cloud ETL tool?
AWS Glue and Azure Data factory for ELT best performance cloud services.
How does Azure Data Factory compare with Informatica PowerCenter?
Azure Data Factory is flexible, modular, and works well. In terms of cost, it is not too pricey. It offers the stability and reliability I am looking for, good scalability, and is easy to set up an...
How does Azure Data Factory compare with Informatica Cloud Data Integration?
Azure Data Factory is a solid product offering many transformation functions; It has pre-load and post-load transformations, allowing users to apply transformations either in code by using Power Q...
Ask a question
Earn 20 points
 

Overview

 

Sample Customers

1. Adobe 2. BMW 3. Coca-Cola 4. General Electric 5. Johnson & Johnson 6. LinkedIn 7. Mastercard 8. Nestle 9. Pfizer 10. Samsung 11. Siemens 12. Toyota 13. Unilever 14. Verizon 15. Walmart 16. Accenture 17. American Express 18. AT&T 19. Bank of America 20. Cisco 21. Deloitte 22. ExxonMobil 23. Ford 24. General Motors 25. IBM 26. JPMorgan Chase 27. Microsoft (Azure Data Factory is developed by Microsoft) 28. Oracle 29. Procter & Gamble 30. Salesforce 31. Shell 32. Visa
citi, swedbank, RSA, MasterCard, travelers, telstra
Find out what your peers are saying about Microsoft, Informatica, IBM and others in Data Integration. Updated: January 2026.
882,032 professionals have used our research since 2012.