Try our new research platform with insights from 80,000+ expert users

Azure Data Factory vs Infogix Data360 Analyze [EOL] comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Azure Data Factory
Average Rating
8.0
Reviews Sentiment
6.9
Number of Reviews
92
Ranking in other categories
Data Integration (1st), Cloud Data Warehouse (2nd)
Infogix Data360 Analyze [EOL]
Average Rating
7.0
Number of Reviews
1
Ranking in other categories
No ranking in other categories
 

Featured Reviews

KandaswamyMuthukrishnan - PeerSpot reviewer
Integrates diverse data sources and streamlines ETL processes effectively
Regarding potential areas of improvement for Azure Data Factory, there is a need for better data transformation, especially since many people are now depending on DataBricks more for connectivity and data integration. Azure Data Factory should consider how to enhance integration or filtering for more transformations, such as integrating with Spark clusters. I am satisfied with Azure Data Factory so far, but I suggest integrating some AI functionality to analyze data during the transition itself, providing insights such as null records, common records, and duplicates without running a separate pipeline or job. The monitoring tools in Azure Data Factory are helpful for optimizing data pipelines; while the current feature is adequate, they can improve by creating a live dashboard to see the online process, including how much percentage has been completed, which will be very helpful for people who are monitoring the pipeline.
reviewer1321299 - PeerSpot reviewer
Easy drag-and-drop interface and supports custom Python functions, but the performance needs to be better
The memory processing needs to be improved because when you deal with a large amount of data, the interface tends to hang a little bit. When the system boots up, it can take between two and five minutes, depending on the system memory (RAM). If the system is low on memory then it takes a long time to start up. If you are not familiar with Python then this product will be a little more difficult for you. It can take a long time to migrate from one version to the next because there are a lot of processes to deal with.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"We have been using drivers to connect to various data sets and consume data."
"Most of our customers are Microsoft shops and prefer Azure Data Factory because they have good licensing options and a trust factor with Microsoft."
"One of the most valuable features of Azure Data Factory is the drag-and-drop interface. This helps with workflow management because we can just drag any tables or data sources we need. Because of how easy it is to drag and drop, we can deliver things very quickly. It's more customizable through visual effect."
"It is a complete ETL Solution."
"The valuable feature of Azure Data Factory is its integration capability, as it goes well with other components of Microsoft Azure."
"Its integrability with the rest of the activities on Azure is most valuable."
"Data Factory's most valuable feature is Copy Activity."
"For developers that are very accustomed to the Microsoft development studio, it's very easy for them to complete end-to-end data integration."
"The drag-and-drop functionality makes it easy for business users."
 

Cons

"The number of standard adaptors could be extended further."
"Azure Data Factory could benefit from improvements in its monitoring capabilities to provide a more robust feature set. Enhancing the ease of deployment to higher environments within Azure DevOps would be beneficial, as the current process often requires extensive scripting and pipeline development. It is also known for the flexibility of the data flow feature, particularly in supporting more dynamic data-driven architectures. These enhancements would contribute to a more seamless and efficient workflow within GitLab."
"The inability to connect local VMs and local servers into the data flow is a limitation that prevents giving Azure Data Factory a perfect score."
"In the next release, it's important that some sort of scheduler for running tasks is added."
"The pricing scheme is very complex and difficult to understand."
"Data Factory could be improved by eliminating the need for a physical data area. We have to extract data using Data Factory, then create a staging database for it with Azure SQL, which is very, very expensive. Another improvement would be lowering the licensing cost."
"Occasionally, there are problems within Microsoft itself that impacts the Data Factory and causes it to fail."
"Lacks a decent UI that would give us a view of the kinds of requests that come in."
"The memory processing needs to be improved because when you deal with a large amount of data, the interface tends to hang a little bit."
 

Pricing and Cost Advice

"Pricing appears to be reasonable in my opinion."
"This is a cost-effective solution."
"The licensing model for Azure Data Factory is good because you won't have to overpay. Pricing-wise, the solution is a five out of ten. It was not expensive, and it was not cheap."
"ADF is cheaper compared to AWS."
"Product is priced at the market standard."
"There's no licensing for Azure Data Factory, they have a consumption payment model. How often you are running the service and how long that service takes to run. The price can be approximately $500 to $1,000 per month but depends on the scaling."
"The pricing model is based on usage and is not cheap."
"The pricing is pay-as-you-go or reserve instance. Of the two options, reserve instance is much cheaper."
"The open-source version is free to use, although it has a limitation of two-million records."
report
Use our free recommendation engine to learn which Data Integration solutions are best for your needs.
867,676 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
13%
Computer Software Company
12%
Manufacturing Company
9%
Government
7%
No data available
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business31
Midsize Enterprise19
Large Enterprise55
No data available
 

Questions from the Community

How do you select the right cloud ETL tool?
AWS Glue and Azure Data factory for ELT best performance cloud services.
How does Azure Data Factory compare with Informatica PowerCenter?
Azure Data Factory is flexible, modular, and works well. In terms of cost, it is not too pricey. It offers the stability and reliability I am looking for, good scalability, and is easy to set up an...
How does Azure Data Factory compare with Informatica Cloud Data Integration?
Azure Data Factory is a solid product offering many transformation functions; It has pre-load and post-load transformations, allowing users to apply transformations either in code by using Power Q...
Ask a question
Earn 20 points
 

Overview

 

Sample Customers

1. Adobe 2. BMW 3. Coca-Cola 4. General Electric 5. Johnson & Johnson 6. LinkedIn 7. Mastercard 8. Nestle 9. Pfizer 10. Samsung 11. Siemens 12. Toyota 13. Unilever 14. Verizon 15. Walmart 16. Accenture 17. American Express 18. AT&T 19. Bank of America 20. Cisco 21. Deloitte 22. ExxonMobil 23. Ford 24. General Motors 25. IBM 26. JPMorgan Chase 27. Microsoft (Azure Data Factory is developed by Microsoft) 28. Oracle 29. Procter & Gamble 30. Salesforce 31. Shell 32. Visa
citi, swedbank, RSA, MasterCard, travelers, telstra
Find out what your peers are saying about Microsoft, Informatica, Talend and others in Data Integration. Updated: August 2025.
867,676 professionals have used our research since 2012.