Try our new research platform with insights from 80,000+ expert users

Google Cloud AI Platform vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Nov 2, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Google Cloud AI Platform
Ranking in AI Development Platforms
10th
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
9
Ranking in other categories
No ranking in other categories
Microsoft Azure Machine Lea...
Ranking in AI Development Platforms
5th
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
62
Ranking in other categories
Data Science Platforms (5th)
 

Mindshare comparison

As of January 2026, in the AI Development Platforms category, the mindshare of Google Cloud AI Platform is 3.2%, down from 5.1% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 3.4%, down from 8.4% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms Market Share Distribution
ProductMarket Share (%)
Microsoft Azure Machine Learning Studio3.4%
Google Cloud AI Platform3.2%
Other93.4%
AI Development Platforms
 

Featured Reviews

TJ
Owner at Go knowledge
Streamlines app development with dynamic databases and an easy setup
I used Oracle APEX before Google Cloud AI Platform. Oracle APEX is a free tool, except for the Oracle database, which I can only use with it. To have more freedom, I chose Firebase and Google's solutions as it allows me to run it on a hosted server if I want to.
reviewer2722962 - PeerSpot reviewer
Data Scientist
Platform accelerates model development, enhances collaboration, and offers efficient deployment
The best features Microsoft Azure Machine Learning Studio offers include deep integration with Python notebooks and Azure Data Lake, which allows me to import external data, and through the pipeline, I can build my models, performing what is called data injection for my model building, making that deep integration quite interesting to use. Microsoft Azure Machine Learning Studio is a powerful platform for those already in the Azure ecosystem because it allows for scalability and provides a good environment for reproducibility, as well as collaboration tools, all designed and packaged in one place, which makes it outstanding. Microsoft Azure Machine Learning Studio has positively impacted my organization by reducing our project delivery times and increasing the pace at which we work, allowing us to focus on other more important tasks. Using Microsoft Azure Machine Learning Studio has reduced our model development time from approximately four hours to about two hours.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"I think the user interface is quite handy, and it is easy to use as compared to the other cloud platforms."
"The solution is able to read 90% of the documents correctly with a 10% error rate."
"A range of a a wide range of algorithms, EIM voice mails, which can be plugged in right away into your solution into into into our solution, and then have platform that provides know, to to come up with an operational solution really quick."
"I have seen measurable benefits from Google Cloud AI Platform."
"On GCP, we are exposing our API services to our clients so that they send us their information. It can be single individual records or it can be a batch of their clients."
"Since the model could be trained in just a couple of hours and deploying it took only a few minutes, the entire process took less than an hour."
"The platform's Google Vision API is particularly valuable."
"The feedback left about these tools was really helpful and informative for us"
"Overall, I rate Microsoft Azure Machine Learning Studio a seven out of ten."
"One of the notable advantages is that it offers both a visual designer, which is user-friendly, and an advanced coding option."
"It's a great option if you are fairly new and don't want to write too much code."
"The solution's most beneficial feature is its integration with Azure."
"Their support is helpful."
"The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem."
"It's good for citizen data scientists, but also, other people can use Python or .NET code."
"The graphical nature of the output makes it very easy to create PowerPoint reports as well."
 

Cons

"At first, there were only the user-managed rules to identify the best attributes of the individual. Then, we came up with a truth set and developed different machine learning models with the help of that truth set, so now it's completely machine learning."
"The technical support from Google is not very fast. I think it is about a five out of ten even though they have courses online where I can learn a lot, if I really need support, I have to wait a very long time."
"I think it's the it it also has has evolved quite a bit over the last few years, and Google Cloud folks have been getting, more and more services. But I think from a improvement standpoint, so maybe they can look at adding more algorithms, so adding more AI algorithms to their suite."
"Customizations are very difficult, and they take time."
"The solution can be improved by simplifying the process to make your own models."
"The initial setup was straightforward for me but could be difficult for others."
"The model management on Google Cloud AI Platform could be better."
"Improvements in text extraction accuracy and pricing adjustments would be helpful."
"Performance is very poor."
"A problem that I encountered was that I had to pay for the model that I wanted to deploy and use on Azure Machine Learning, but there wasn't any option that that model can be used in the designer."
"Performance is very poor."
"Overall, the icons in the solution could be improved to provide better guidance to users. Additionally, the setup process for the solution could be made easier."
"There's room for improvement in terms of binding the integration with Azure DevOps."
"I would like to see modules to handle Deep Learning frameworks."
"Microsoft Azure Machine Learning Studio could improve in providing more efficient and cost-effective access to its tools for companies like mine."
"They should have a desktop version to work on the platform."
 

Pricing and Cost Advice

"For every thousand uses, it is about four and a half euros."
"The price of the solution is competitive."
"The solution has an attractive starting program, which costs only 300 USD for a duration of three months. During this period, one can accomplish a lot of work on the solution."
"The licenses are cheap."
"The pricing is on the expensive side."
"I am paying for it following a pay-as-you-go. So, the more I use it, the more it costs."
"I rate the solution's pricing a four on a scale of one to ten, where one is cheap, and ten is expensive."
"ML Studio's pricing becomes a numbers game."
"I would rate the pricing an eight out of ten, with ten being very expensive. Not very expensive, not very cheap."
"It is less expensive than one of its competitors."
"There isn’t any such expensive costs and only a standard license is required."
"There is a license required for this solution."
"On a scale from one to ten, with ten being overpriced, I would rate the price of this solution at six."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
880,901 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
14%
Financial Services Firm
11%
Manufacturing Company
10%
University
8%
Financial Services Firm
11%
Manufacturing Company
9%
Computer Software Company
9%
Performing Arts
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business5
Midsize Enterprise2
Large Enterprise2
By reviewers
Company SizeCount
Small Business23
Midsize Enterprise6
Large Enterprise30
 

Questions from the Community

What is your experience regarding pricing and costs for Google Cloud AI Platform?
For the most part, the pricing is perfect sinceit grows with the use of my app. In some cases, they could be more specific about the pricing, especially for some AI features.
What is your primary use case for Google Cloud AI Platform?
I use Google Cloud AI Platform due to Firebase and the many APIs that are available with it.
What advice do you have for others considering Google Cloud AI Platform?
I have knowledge of it, and I do recommend Google Cloud AI Platform to other people. I would definitely rate the overall solution as an eight out of ten.
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
The pricing for Microsoft Azure Machine Learning Studio is reasonable since it's pay as you go, meaning it won't cost excessively unless specific resources are used.
 

Also Known As

No data available
Azure Machine Learning, MS Azure Machine Learning Studio
 

Overview

 

Sample Customers

Carousell
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about Google Cloud AI Platform vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: December 2025.
880,901 professionals have used our research since 2012.