Try our new research platform with insights from 80,000+ expert users

Google Cloud AI Platform vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Nov 2, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Google Cloud AI Platform
Ranking in AI Development Platforms
10th
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
9
Ranking in other categories
No ranking in other categories
Microsoft Azure Machine Lea...
Ranking in AI Development Platforms
5th
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
62
Ranking in other categories
Data Science Platforms (5th)
 

Mindshare comparison

As of January 2026, in the AI Development Platforms category, the mindshare of Google Cloud AI Platform is 3.2%, down from 5.1% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 3.4%, down from 8.4% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms Market Share Distribution
ProductMarket Share (%)
Microsoft Azure Machine Learning Studio3.4%
Google Cloud AI Platform3.2%
Other93.4%
AI Development Platforms
 

Featured Reviews

TJ
Owner at Go knowledge
Streamlines app development with dynamic databases and an easy setup
I used Oracle APEX before Google Cloud AI Platform. Oracle APEX is a free tool, except for the Oracle database, which I can only use with it. To have more freedom, I chose Firebase and Google's solutions as it allows me to run it on a hosted server if I want to.
reviewer2722962 - PeerSpot reviewer
Data Scientist
Platform accelerates model development, enhances collaboration, and offers efficient deployment
The best features Microsoft Azure Machine Learning Studio offers include deep integration with Python notebooks and Azure Data Lake, which allows me to import external data, and through the pipeline, I can build my models, performing what is called data injection for my model building, making that deep integration quite interesting to use. Microsoft Azure Machine Learning Studio is a powerful platform for those already in the Azure ecosystem because it allows for scalability and provides a good environment for reproducibility, as well as collaboration tools, all designed and packaged in one place, which makes it outstanding. Microsoft Azure Machine Learning Studio has positively impacted my organization by reducing our project delivery times and increasing the pace at which we work, allowing us to focus on other more important tasks. Using Microsoft Azure Machine Learning Studio has reduced our model development time from approximately four hours to about two hours.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The solution is able to read 90% of the documents correctly with a 10% error rate."
"The platform's Google Vision API is particularly valuable."
"I have seen measurable benefits from Google Cloud AI Platform."
"Since the model could be trained in just a couple of hours and deploying it took only a few minutes, the entire process took less than an hour."
"I think the user interface is quite handy, and it is easy to use as compared to the other cloud platforms."
"On GCP, we are exposing our API services to our clients so that they send us their information. It can be single individual records or it can be a batch of their clients."
"Some of the valuable features are the vast amount of services that are available, such as load balancer, and the AI architecture."
"A range of a a wide range of algorithms, EIM voice mails, which can be plugged in right away into your solution into into into our solution, and then have platform that provides know, to to come up with an operational solution really quick."
"The solution is integrated with our Microsoft Azure tenant, and we don't have to go anywhere else outside the tenant."
"The platform as a service provides user-friendly instruments, making the experience easy."
"Azure Machine Learning Studio provides a platform to integrate with large language models."
"It's good for citizen data scientists, but also, other people can use Python or .NET code."
"The solution is really scalable."
"When you import the dataset you can see the data distribution easily with graphics and statistical measures."
"The integration with Azure services enhances workflow and meets my expectations."
"It is very easy to test different kinds of machine-learning algorithms with different parameters. You choose the algorithm, drag and drop to the workspace, and plug the dataset into this component."
 

Cons

"The solution can be improved by simplifying the process to make your own models."
"Customizations are very difficult, and they take time."
"It could be more clear, and sometimes there are errors that I don't quite understand."
"The technical support from Google is not very fast. I think it is about a five out of ten even though they have courses online where I can learn a lot, if I really need support, I have to wait a very long time."
"The model management on Google Cloud AI Platform could be better."
"At first, there were only the user-managed rules to identify the best attributes of the individual. Then, we came up with a truth set and developed different machine learning models with the help of that truth set, so now it's completely machine learning."
"I think it's the it it also has has evolved quite a bit over the last few years, and Google Cloud folks have been getting, more and more services. But I think from a improvement standpoint, so maybe they can look at adding more algorithms, so adding more AI algorithms to their suite."
"Improvements in text extraction accuracy and pricing adjustments would be helpful."
"The pricing policy should be improved."
"Microsoft Azure Machine Learning Studio could improve in providing more efficient and cost-effective access to its tools for companies like mine."
"I have found Databricks is a better solution because it has a lot of different cluster choices and better integration with MLflow, which is much easier to handle in a machine learning system."
"The data processor can pose a bit of a challenge, but the real complexity is determined by the skill of the implementation team."
"In the Machine Learning Studio, particularly the Designer part, which is essentially Azure's demo designer, there is room for improvement. Many customers and users tend to switch to Microsoft Azure Multi-Joiners, which is a more basic version, but they do so internally. One area that could use enhancement is the process of connecting components. Currently, every time you want to connect a component, such as linking it to your storage or an instance like EC2, you have to input your username and password repeatedly. This can be quite cumbersome. Google, for instance, has made it more user-friendly by allowing easy access for connecting services within a workspace. In a workspace, you can set up various resources like storage, a database cluster, machine learning studio, and more. When connecting these services, there's no need to enter your username and password each time, making it a more efficient process. Another aspect to consider is the role of the designer, and they were to integrate a large language model to handle various tasks, it could significantly enhance the overall scalability and usability of the platform."
"In terms of data capabilities, if we compare it to Google Cloud's BigQuery, we find a difference. When fetching data from web traffic, Google can do a lot of processing with small queries or functions."
"The price of the solution has room for improvement."
"The solution should be more customizable. There should be more algorithms."
 

Pricing and Cost Advice

"The price of the solution is competitive."
"The solution has an attractive starting program, which costs only 300 USD for a duration of three months. During this period, one can accomplish a lot of work on the solution."
"The licenses are cheap."
"For every thousand uses, it is about four and a half euros."
"The pricing is on the expensive side."
"We pay only the Azure costs for what we use, which involves some subscription costs. But essentially, you pay for what you use. There are no extra costs in addition to the standard licensing fees."
"ML Studio's pricing becomes a numbers game."
"To use MLS is fairly cheap. Even the paid account is something like $20/month, unless you are provisioning large numbers of VMs for a Hadoop cluster. The main MS makes money with this solution is forcing the user to deploy their model on REST API, and being charged each time the API is accessed. There are several pricing tiers for the API. If you do not use the API, then value of MLS is to create rapid experiments ($20/month). The resulting model is not exportable to use, thus you’ll have to recreate the algorithms in either R or Python, which is what I did. MLS results gave me a direction to work with, the actual work is mostly done in R and Python outside of MLS."
"There is a lack of certainty with the solution's pricing."
"It is less expensive than one of its competitors."
"The solution cost is high."
"Last year, we paid 60,000 for Microsoft Azure Machine Learning Studio in our department."
"I am paying for it following a pay-as-you-go. So, the more I use it, the more it costs."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
880,901 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
14%
Financial Services Firm
11%
Manufacturing Company
10%
University
8%
Financial Services Firm
11%
Manufacturing Company
9%
Computer Software Company
8%
Performing Arts
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business5
Midsize Enterprise2
Large Enterprise2
By reviewers
Company SizeCount
Small Business23
Midsize Enterprise6
Large Enterprise30
 

Questions from the Community

What is your experience regarding pricing and costs for Google Cloud AI Platform?
For the most part, the pricing is perfect sinceit grows with the use of my app. In some cases, they could be more specific about the pricing, especially for some AI features.
What is your primary use case for Google Cloud AI Platform?
I use Google Cloud AI Platform due to Firebase and the many APIs that are available with it.
What advice do you have for others considering Google Cloud AI Platform?
I have knowledge of it, and I do recommend Google Cloud AI Platform to other people. I would definitely rate the overall solution as an eight out of ten.
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
The pricing for Microsoft Azure Machine Learning Studio is reasonable since it's pay as you go, meaning it won't cost excessively unless specific resources are used.
 

Also Known As

No data available
Azure Machine Learning, MS Azure Machine Learning Studio
 

Overview

 

Sample Customers

Carousell
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about Google Cloud AI Platform vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: December 2025.
880,901 professionals have used our research since 2012.