Try our new research platform with insights from 80,000+ expert users
Head of Software at Emporia
User
Top 10
Good centralized pipeline tracking and error logging with very good performance
Pros and Cons
  • "Real user monitoring gives us invaluable insights into actual user experiences, helping us prioritize improvements where they matter most."
  • "In some cases the screenshots don't match the text as updates are made."

What is our primary use case?

Our primary use case is custom and vendor-supplied web application log aggregation, performance tracing and alerting. 

We run a mix of AWS EC2, Azure serverless, and colocated VMWare servers to support higher education web applications. 

Managing a hybrid multi-cloud solution across hundreds of applications is always a challenge. 

Datadog agents on each web host and native integrations with GitHubAWS, and Azure get all of our instrumentation and error data in one place for easy analysis and monitoring.

How has it helped my organization?

Using Datadog across all of our apps, we were able to consolidate a number of alerting and error-tracking apps, and Datadog ties them all together in cohesive dashboards. 

Whether the app is vendor-supplied or we built it ourselves, the depth of tracing, profiling, and hooking into logs is all obtainable and tunable. Both legacy .NET Framework and Windows Event Viewer and cutting-edge .NET Core with streaming logs all work. 

The breadth of coverage for any app type or situation is really incredible. It feels like there's nothing we can't monitor.

What is most valuable?

When it comes to Datadog, several features have proven particularly valuable. For example, the centralized pipeline tracking and error logging provide a comprehensive view of our development and deployment processes, making it much easier to identify and resolve issues quickly. 

Synthetic testing has been a game-changer, allowing us to catch potential problems before they impact real users. 

Real user monitoring gives us invaluable insights into actual user experiences, helping us prioritize improvements where they matter most. And the ability to create custom dashboards has been incredibly useful, allowing us to visualize key metrics and KPIs in a way that makes sense for different teams and stakeholders. 

Together, these features form a powerful toolkit that helps us maintain high performance and reliability across our applications and infrastructure, ultimately leading to better user satisfaction and more efficient operations.

What needs improvement?

They need an expansion of the Android and IOS apps to provide a simplified CI/CD pipeline history view. 

I like the idea of monitoring on the go. That said, it seems the options are still a bit limited out of the box. 

While the documentation is very good considering all the frameworks and technology Datadog covers, there are areas - specifically .NET Profiling and Tracing of IIS hosted apps - that need a lot of focus to pick up on the key details needed. 

In some cases the screenshots don't match the text as updates are made. I spent longer than I should figuring out how to correlate logs to traces, mostly related to environmental variables.

Buyer's Guide
Datadog
June 2025
Learn what your peers think about Datadog. Get advice and tips from experienced pros sharing their opinions. Updated: June 2025.
856,873 professionals have used our research since 2012.

For how long have I used the solution?

I've used the solution for about three years.

What do I think about the stability of the solution?

We have been impressed with the uptime and clean and light resource usage of the agents.

What do I think about the scalability of the solution?

The solution has been very scalable and very customizable.

How are customer service and support?

Support is always helpful to help us tune our committed costs and alert us when we start spending out of the on-demand budget.

Which solution did I use previously and why did I switch?

We used a mix of a custom error email system, SolarWinds, UptimeRobot, and GitHub actions. We switched to find one platform that could give deep app visibility regardless of Linux or Windows or Container, cloud or on-prem hosted.

How was the initial setup?

The implementation is generally simple. That said, .NET Profiling of IIS and aligning logs to traces and profiles was a challenge.

What about the implementation team?

The solution was implemented in-house. 

What was our ROI?

Our ROI has been significant time saved by the development team assessing bugs and performance issues.

What's my experience with pricing, setup cost, and licensing?

Set up live trials to asses cost scaling. Small decisions around how monitors are used can impact cost scaling. 

Which other solutions did I evaluate?

NewRelic was considered. LogicMonitor was chosen over Datadog for our network and campus server management use cases.

What other advice do I have?

We are excited to explore the new offerings around LLM further and continue to expand our presence in Datadog. 

Which deployment model are you using for this solution?

Hybrid Cloud

If public cloud, private cloud, or hybrid cloud, which cloud provider do you use?

Microsoft Azure
Disclosure: My company does not have a business relationship with this vendor other than being a customer.
Flag as inappropriate
PeerSpot user
Neil Elver - PeerSpot reviewer
Application Development Team Lead at TCS EDUCATION SYSTEM
User
Top 10
Good synthetic testing, centralized pipeline tracking and error logging
Pros and Cons
  • "Synthetic testing has been a game-changer, allowing us to catch potential problems before they impact real users."
  • "I'd like to see an expansion of the Android and IOS apps to have a simplified CI/CD pipeline history view."

What is our primary use case?

Our primary use case is custom and vendor-supplied web application log aggregation, performance tracing and alerting. 

We run a mix of AWS EC2, Azure serverless, and colocated VMWare servers to support higher education web applications. 

Managing a hybrid multi-cloud solution across hundreds of applications is always a challenge. Datadog agents on each web host and native integrations with GitHubAWS, and Azure get all of our instrumentation and error data in one place for easy analysis and monitoring.

How has it helped my organization?

Through the use of Datadog across all of our apps, we were able to consolidate a number of alerting and error-tracking apps, and Datadog ties them all together in cohesive dashboards. Whether the app is vendor-supplied or we built it ourselves, the depth of tracing, profiling, and hooking into logs is all obtainable and tunable. Both legacy .NET Framework and Windows Event Viewer and cutting-edge .NET Core with streaming logs all work. The breadth of coverage for any app type or situation is really incredible. It feels like there's nothing we can't monitor.

What is most valuable?

When it comes to Datadog, several features have proven particularly valuable. 

The centralized pipeline tracking and error logging provide a comprehensive view of our development and deployment processes, making it much easier to identify and resolve issues quickly. 

Synthetic testing has been a game-changer, allowing us to catch potential problems before they impact real users. Real user monitoring gives us invaluable insights into actual user experiences, helping us prioritize improvements where they matter most. And the ability to create custom dashboards has been incredibly useful, allowing us to visualize key metrics and KPIs in a way that makes sense for different teams and stakeholders. 

Together, these features form a powerful toolkit that helps us maintain high performance and reliability across our applications and infrastructure, ultimately leading to better user satisfaction and more efficient operations.

What needs improvement?

I'd like to see an expansion of the Android and IOS apps to have a simplified CI/CD pipeline history view. I like the idea of monitoring on the go, however, it seems the options are still a bit limited out of the box. 

While the documentation is very good considering all the frameworks and technology Datadog covers, there are areas - specifically .NET Profiling and Tracing of IIS-hosted apps - that need a lot of focus to pick up on the key details needed. In some cases the screenshots don't match the text as updates are made. I feel I spent longer than I should figuring out how to correlate logs to traces, mostly related to environmental variables.

For how long have I used the solution?

I've used the solution for about three years.

What do I think about the stability of the solution?

We have been impressed with the uptime and clean and light resource usage of the agents.

What do I think about the scalability of the solution?

The solution was very scalable and very customizable.

How are customer service and support?

Sales service is always helpful in tuning our committed costs and alerting us when we start spending outside the on-demand budget.

Which solution did I use previously and why did I switch?

We used a mix of a custom error email system, SolarWinds, UptimeRobot, and GitHub actions. We switched to find one platform that could give deep app visibility regardless of Linux, Windows, Container, cloud or on-prem hosted.

How was the initial setup?

The setup is generally simple. That said, .NET Profiling of IIS and aligning logs to traces and profiles was a challenge.

What about the implementation team?

The solution was iImplemented in-house. 

What was our ROI?

I'd count our ROI as significant time saved by the development team assessing bugs and performance issues.

What's my experience with pricing, setup cost, and licensing?

It's a good idea to set up live trials to asses cost scaling. Small decisions around how monitors are used can have big impacts on cost scaling. 

Which other solutions did I evaluate?

NewRelic was considered. LogicMonitor was chosen over Datadog for our network and campus server management use cases.

What other advice do I have?

We are excited to dig further into the new offerings around LLM and continue to grow our footprint in Datadog. 

Which deployment model are you using for this solution?

Hybrid Cloud

If public cloud, private cloud, or hybrid cloud, which cloud provider do you use?

Microsoft Azure
Disclosure: My company does not have a business relationship with this vendor other than being a customer.
Flag as inappropriate
PeerSpot user
Buyer's Guide
Datadog
June 2025
Learn what your peers think about Datadog. Get advice and tips from experienced pros sharing their opinions. Updated: June 2025.
856,873 professionals have used our research since 2012.
Tejaswini A - PeerSpot reviewer
Application Engineer at Discover Financial Services
User
Top 20
Consolidates all our logs into a single place, making it easier to find errors
Pros and Cons
  • "The best way it has helped us is by consolidating all our logs into a single place and making it easier to find errors."
  • "Another issue that I have is with the search syntax, it could be simpler and it feels like there are too many ways to do the same things."

What is our primary use case?

We have a tech stack including all backend services written in TS/Node (mostly) and as a full stack engineer, it is crucial to keep track of new and existing errors. Our logs have been consolidated in Datadog and are accessible for search and review, so the service has become a daily tool for my work. 

More recently, session replay has been adopted at my company, but I do not like it so much because the UI elements are not in their place, so it is very hard to see what the users on the web app are actually clicking on.

How has it helped my organization?

The best way it has helped us is by consolidating all our logs into a single place and making it easier to find errors. Previously using AWS Cloudwatch was cumbersome and time-consuming. One issue I do have with logs is the length of time they are on the platform. Some issues happen sporadically, so it would be good to have logs for longer than one month by default or make it a configuration. 

Another issue that I have is with the search syntax, it could be simpler and it feels like there are too many ways to do the same things.

What is most valuable?

Logs search is the most valuable feature because it has consolidated all of our backend services logs into one place. Now we can see the relationship between them as requests are going from one service to other dependencies. 

What needs improvement?

One issue I do have with logs is the length of time they are on the platform. Some issues happen sporadically, so it would be good to have logs for longer than one month by default or make it a configuration. I have yet to try rehydrating logs, so this might be an option I need to try. Another issue I have is with the search syntax, it could be simpler. The syntax is a bit cumbersome and there is not an intuitive to save them to look for similar searches in the future. 

Finally, while my company replaced a different tool for session replay with DataDog's version, I find it clunky and in need of further improvements. For example, when troubleshooting a web portal issue, it is super important to know what the user clicked, but the elements are not where they should be in the replay.

It is also hard to find details about the sessions, and metadata such as user email, account, etc. that exist on other services with replay features.

For how long have I used the solution?

I have been using Datadof for approximately five years.

What do I think about the stability of the solution?

So far we haven't had any issues with uptime and Datadog has been available when needed.

What do I think about the scalability of the solution?

It seems to scale well as we continue to add services that need monitoring.

How are customer service and support?

I haven't had to contact support.

Which solution did I use previously and why did I switch?

Cloudwatch was not a great tool for what we need to do to troubleshoot issues.

What about the implementation team?

We deployed it in-house with intermediate expertise.

What was our ROI?

I am not sure how much we are paying, but I use the app often enough to feel like we are getting a good ROI.

Which other solutions did I evaluate?

I was not involved in the choosing process as a software engineer

Which deployment model are you using for this solution?

Public Cloud
Disclosure: My company does not have a business relationship with this vendor other than being a customer.
PeerSpot user
reviewer1599867 - PeerSpot reviewer
Senior Performance and Architecture Analyst at a manufacturing company with 10,001+ employees
Real User
Top 20
Great technology with a nice interface
Pros and Cons
  • "The solution is stable."
  • "The technology itself is generally very useful and the interface is great."
  • "There should be a clearer view of the expenses."
  • "I find the setup cost to be too expensive. The setup cost for Datadog is more than $100. I am evaluating the usage of this solution, however, it is too expensive."

What is most valuable?

The technology itself is generally very useful and the interface it great.

What needs improvement?

There should be a clearer view of the expenses.

For how long have I used the solution?

I have used the solution for four years.

What do I think about the stability of the solution?

The solution is stable.

How are customer service and support?

I have not personally interacted with customer service. I am satisfied with tech support.

How would you rate customer service and support?

Neutral

Which solution did I use previously and why did I switch?

I am using ThousandEyes and Datadog. Datadog supports AI-driven data analysis, with some AI elements to analyze, like data processing tools and so on. AI helps in Datadog primarily for resolving application issues.

How was the initial setup?

It was not difficult to set up for me. There was no problem.

What was our ROI?

I can confirm there is a return on investment.

What's my experience with pricing, setup cost, and licensing?

I find the setup cost to be too expensive. The setup cost for Datadog is more than $100. I am evaluating the usage of this solution, however, it is too expensive.

What other advice do I have?

I would rate this solution eight out of ten. 

Disclosure: My company does not have a business relationship with this vendor other than being a customer.
Flag as inappropriate
PeerSpot user
reviewer08624379 - PeerSpot reviewer
Senior DevOps Engineer at MIM Software Inc.
User
Top 20
Great documentation and learning platform with good built-in integrations
Pros and Cons
  • "Datadog's learning platform is second to none."
  • "Datadog's roadmap can be a bit unpredictable at times."

What is our primary use case?

We were looking for an all-in-one observability platform that could handle a number of different environments and products. At a basic level, we have a variety of on-premises servers (Windows/Mac/Linux) as well as a number of commercial, cloud-hosted products. 

While it's often possible to let each team rely on its own means for monitoring, we wanted something that the entire company could rally around - a unified platform that is developed and supported by the very same people, not others just slapping their name on some open source products they have no control over.

How has it helped my organization?

Datadog has effortlessly dropped in to nearly every stage of observability for us. We appreciate how it has robust cross-platform support for our IT assets, and for integrating hosted products, enabling integrations often couldn't be easier, with many of them including native dashboards and even other types of content packs. 

Over the last couple of years, we have onboarded a number of engineering teams, and each of them feels comfortable using Datadog. This gives us the ability to build organizational knowledge.

What is most valuable?

Datadog's learning platform is second to none. It's the gold standard of training resources in my mind; not only are these self-paced courses available at no charge, but you can spin up an actual Datadog environment to try out its various features. 

I just hate when other vendors try to upsell you on training beyond their (often poorly-written) documentation. Apart from that, we appreciate the variety of content that comes from Datadog's built-in integrations - for common sources, we don't have to worry about parsing, creating dashboards, or otherwise reinventing the wheel.

What needs improvement?

Datadog's roadmap can be a bit unpredictable at times. For instance, a few years ago, our rep at the time stated that Datadog had dropped its plans to develop an incident on-call platform. However, this year, they released a platform that does exactly that.

They also decided to drop chat-based support just recently. While I understand that it's often easier to work with support tickets, I do miss the easy availability of live support. 

It would be nice if Datadog continued to broaden its variety of available integrations to include even more commercial platforms because that is central to its appeal. If we're looking at a new product and there isn't a native integration, then that's more work on our part.

Disclosure: My company does not have a business relationship with this vendor other than being a customer.
Flag as inappropriate
PeerSpot user
Senior Engineer at a retailer with 1,001-5,000 employees
User
Good monitoring capabilities, centralizing of logs, and making data easily searchable
Pros and Cons
  • "The intuitive user interface has been one of the most valuable features for us."
  • "While the UI and search functionality are excellent, further improvement could be made in the querying of logs by offering more advanced templates or suggestions based on common use cases."

What is our primary use case?

Our primary use of Datadog involves monitoring over 50 microservices deployed across three distinct environments. These services vary widely in their functions and resource requirements. 

We rely on Datadog to track usage metrics, gather logs, and provide insight into service performance and health. Its flexibility allows us to efficiently monitor both production and development environments, ensuring quick detection and response to any anomalies. 

We also have better insight into metrics like latency and memory usage.

How has it helped my organization?

Datadog has significantly improved our organization’s monitoring capabilities by centralizing all of our logs and making them easily searchable. This has streamlined our troubleshooting process, allowing for quicker root cause analysis. 

Additionally, its ease of implementation meant that we could cover all of our services comprehensively, ensuring that logs and metrics were thoroughly captured across our entire ecosystem. This has enhanced our ability to maintain system reliability and performance.

What is most valuable?

The intuitive user interface has been one of the most valuable features for us. Unlike other platforms like Grafana, as an example, where learning how to query either involves a lot of trial and error or memorization almost like learning a new language, Datadog’s UI makes finding logs, metrics, and performance data straightforward and efficient. This ease of use has saved us time and reduced the learning curve for new team members, allowing us to focus more on analysis and troubleshooting rather than on learning the tool itself.

What needs improvement?

While the UI and search functionality are excellent, further improvement could be made in the querying of logs by offering more advanced templates or suggestions based on common use cases. This would help users discover powerful queries they might not think to create themselves. 

Additionally, enhancing alerting capabilities with more customizable thresholds or automated recommendations could provide better insights, especially when dealing with complex environments like ours with numerous microservices.

For how long have I used the solution?

I've used the solution for five years.

What do I think about the stability of the solution?

We have never experienced any downtime.

Which solution did I use previously and why did I switch?

We previously used Sumo Logic.

Which deployment model are you using for this solution?

Public Cloud
Disclosure: My company does not have a business relationship with this vendor other than being a customer.
Flag as inappropriate
PeerSpot user
Sid Nigam - PeerSpot reviewer
Works at RAPDEV LLC
User
Top 20
Unified platform with customizable dashboards and AI-driven insights
Pros and Cons
  • "The infrastructure monitoring capabilities, especially for our Kubernetes clusters, have helped us optimize resource allocation and reduce costs."
  • "We'd like to see more advanced incident management capabilities integrated directly into the platform."

What is our primary use case?

Our primary use case for this solution is comprehensive cloud monitoring across our entire infrastructure and application stack. 

We operate in a multi-cloud environment, utilizing services from AWS, Azure, and Google Cloud Platform. 

Our applications are predominantly containerized and run on Kubernetes clusters. We have a microservices architecture with dozens of services communicating via REST APIs and message queues. 

The solution helps us monitor the performance, availability, and resource utilization of our cloud resources, databases, application servers, and front-end applications. 

It's essential for maintaining high availability, optimizing costs, and ensuring a smooth user experience for our global customer base. We particularly rely on it for real-time monitoring, alerting, and troubleshooting of production issues.

How has it helped my organization?

Datadog has significantly improved our organization by providing us with great visibility across the entire application stack. This enhanced observability has allowed us to detect and resolve issues faster, often before they impact our end-users. 

The unified platform has streamlined our monitoring processes, replacing several disparate tools we previously used. This consolidation has improved team collaboration and reduced context-switching for our DevOps engineers. 

The customizable dashboards have made it easier to share relevant metrics with different stakeholders, from developers to C-level executives. We've seen a marked decrease in our mean time to resolution (MTTR) for incidents, and the historical data has been invaluable for capacity planning and performance optimization. 

Additionally, the AI-driven insights have helped us proactively identify potential issues and optimize our infrastructure costs.

What is most valuable?

We've found the Application Performance Monitoring (APM) feature to be the most valuable, as it provides great visibility on trace-level data. This granular insight allows us to pinpoint performance bottlenecks and optimize our code more effectively. 

The distributed tracing capability has been particularly useful in our microservices environment, helping us understand the flow of requests across different services and identify latency issues. 

Additionally, the log management and analytics features have greatly improved our ability to troubleshoot issues by correlating logs with metrics and traces. 

The infrastructure monitoring capabilities, especially for our Kubernetes clusters, have helped us optimize resource allocation and reduce costs.

What needs improvement?

While Datadog is an excellent monitoring solution, it could be improved by building more features to replace alerting apps like OpsGenie and PagerDuty. Specifically, we'd like to see more advanced incident management capabilities integrated directly into the platform. This could include features like sophisticated on-call scheduling, escalation policies, and incident response workflows. 

Additionally, we'd appreciate more customizable machine learning-driven anomaly detection to help us identify unusual patterns more accurately. Improved support for serverless architectures, particularly for monitoring and tracing AWS Lambda functions, would be beneficial. 

Enhanced security monitoring and threat detection capabilities would also be valuable, potentially reducing our reliance on separate security information and event management (SIEM) tools.

For how long have I used the solution?

I've used the solution for two years.

Disclosure: My company does not have a business relationship with this vendor other than being a customer.
Flag as inappropriate
PeerSpot user
Michael Johnston1 - PeerSpot reviewer
Senior Software Engineer at angel Studios
Vendor
Top 20
A great tool with an easy setup and helpful error logs
Pros and Cons
  • "The setup cost was minimal."
  • "We did have an issue where a synthetic test was set up before the holiday break, and we were quickly charged a great amount. Our team worked with Datadog, and they were able to help us out since it was inadvertent on our end and was a user error."

What is our primary use case?

We currently have an error monitor to monitor errors on our prod environment.  Once we hit a certain threshold, we get an alert on Slack. This helps address issues the moment they happen before our users notice. 

We also utilize synthetic tests on many pages on our site. They're easy to set up and are great for pinpointing when a bug is shipped, but they may take down a less visited page that we aren't immediately aware of. It's a great extra check to make sure the code we ship is free of bugs.

How has it helped my organization?

The synthetic tests have been invaluable. We use them to check various pages and ensure functionality across multiple areas. Furthermore, our error monitoring alerts have been crucial in letting us know of problems the moment they pop up.  

Datadog has been a great tool, and all of our teams utilize many of its features.  We have regular mob sessions where we look at our Datadog error logs and see what we can address as a team. It's been great at providing more insight into our users and logging errors that can be fixed.

What is most valuable?

The error logs have been super helpful in breaking down issues affecting our users. Our monitors let us know once we hit a certain threshold as well, which is good for momentary blips and issues with third-party providers or rollouts that we have in the works. Just last week, we had a roll-out where various features were broken due to a change in our backend API. Our Datadog logs instantly notified us of the issues, and we could troubleshoot everything much more easily than just testing blind. This was crucial to a successful rollout.

What needs improvement?

I honestly can't think of anything that can be improved. We've started using more and more features from our Datadog account and are really grateful for all of the different ways we can track and monitor our site. 

We did have an issue where a synthetic test was set up before the holiday break, and we were quickly charged a great amount. Our team worked with Datadog, and they were able to help us out since it was inadvertent on our end and was a user error. That was greatly appreciated and something that helped start our relationship with the Datadog team.

For how long have I used the solution?

We've been using Datadog for several months. We started with the synthetic tests and now use It for error handling and in many other ways.

What do I think about the stability of the solution?

Stability has been great. We've had no issues so far.

What do I think about the scalability of the solution?

The solution is very easy to scale. We've used it on multiple clients.

How are customer service and support?

We had a dev who had set up a synthetic test that was running every five minutes in every single region over the holiday break last year. The Datadog team was great and very understanding and we were able to work this out with them.

How would you rate customer service and support?

Positive

Which solution did I use previously and why did I switch?

We didn't have any previous solution. At a previous company, I've used Sentry. However, I also find Datadog to be much easier, plus the inclusion of synthetic tests is awesome.

How was the initial setup?

The documentation was great and our setup was easy.

What about the implementation team?

We implemented the solution in-house.

What was our ROI?

This has had a great ROI as we've been able to address critical bugs that have been found via our Datadog tools.

What's my experience with pricing, setup cost, and licensing?

The setup cost was minimal. The documentation is great and the product is very easy to set up.

Which other solutions did I evaluate?

We also looked at other providers and settled on Datadog. It's been great to use across all our clients.

Which deployment model are you using for this solution?

Private Cloud
Disclosure: My company does not have a business relationship with this vendor other than being a customer.
Flag as inappropriate
PeerSpot user
Buyer's Guide
Download our free Datadog Report and get advice and tips from experienced pros sharing their opinions.
Updated: June 2025
Buyer's Guide
Download our free Datadog Report and get advice and tips from experienced pros sharing their opinions.