Try our new research platform with insights from 80,000+ expert users
Head of BI at Wind Mobility
Real User
The ability to have one single flow of inputting data from multiple consumers simplified our architecture
Pros and Cons
  • "Amazon Kinesis has improved our ROI."
  • "Something else to mention is that we use Kinesis with Lambda a lot and the fact that you can only connect one Stream to one Lambda, I find is a limiting factor. I would definitely recommend to remove that constraint."

What is our primary use case?

In terms of use cases, it depends of which component we're talking about, as we use three of the 4 components. The only one we don't use is the Video Streams.

Kinesis Data Stream is the module that we have been using the longest, essentially we use it to hold data which will be processed by multiple consumers. We have multiple data sources and we use Kinesis to funnel that data which is then consumed by multiple other consumers. We gather data coming from IoT devices, user phones, databases and a variety of other sources and then, as we have multiple consumers, we use Kinesis to actually gather the data and then we process it directly in Lambda, in Firehose, or in other applications.

How has it helped my organization?

Amazon Kinesis has absolutely improved our organization. Before Data Streams, we were using a couple of other solutions, including Talend and Pentaho, to move data around. Each of them were their own silos. So the ability to have one single flow of  data from multiple consumers simplified our architecture a lot because you didn't need to copy or read the data multiple times, you just pull that data and then use multiple consumers. It actually simplified our architecture. It will also help us in the future when we have to build additional applications based on the same input data. We already have that data available. It will just be a matter of building the application itself. So it saves us a lot of time.

For Firehose, we perceive time-savings as a result of its incorporation. It takes you a couple of minutes to configure and it saves quite a lot of time in trying to get our information into the data lake. 

Regarding Kinesis Analytics, we have real-time alarms and real-time data flows to populate other systems. For example, we populate Salesforce using a tumbling window implemented with Kinesis Data Analytics and Lambda. We also have alarms for things like knowing when someone is affecting our assets and we need to warn the operators in real-time. So Kinesis Analytics has actually given us the ability to track things in real-time that before we didn't have the ability to track.

Because we couldn't do that in the database we needed a component that had the ability to get the last window of data super quickly and if something was wrong, to notify and identify the failing record or the information that we wanted to trigger and with Lambda to notify the user. At certain points, when we had operational issues, we implemented alarms that have the key indicators to help us attack those issues before they grew and it was too late to attack them. So that has been essential for us.

What is most valuable?

I think that all Kinesis components have their own features and their own value. Starting from Data Streams, you have to have it as the data queue or else you would need to go to Kafka or another message broker (with higher implementation effort if your ecosystem is fully hosted in AWS already). I think that the solution they have put together in Kinesis is fairly easy to use. It is definitely a core component in any data architecture. 

On the other hand, I find Firehose super simple and super useful for certain use cases. I wouldn't say it is as essential as Data Streams, but it is very handy if you want to just dump data. The connection between Data Streams and Firehose allows you to do that without worrying too much about performance and configuration. I find Firehose super simple to use for a very specific use case, but that use case is very common.

Kinesis Analytics is definitely more cutting edge. Out of Kinesis this is the most innovative part. We have used it for some alarms and for some batch processing in time windows. If we are talking about massive amounts of data, then you need to move to other solutions such as EMR or Glue for big data. If the amount of data is manageable and you want something to analyze on the fly, Kinesis Analytics is very appropriate and it gives you the ability to interact via SQL. So it makes your life easier if you want to develop a relatively self-contained application to do analytics on the fly.

I would say that Data Streams, in a matter of weeks, created a massive time-saving. Something that we haven't factored in is cost savings because we don't need to repeat the same data flow multiple times since each of those data flows are actually cost associated. We're talking about a couple of $100's per month, which is significant. In terms of time-savings here, we are in the scale of weeks. 

What needs improvement?

In terms of what can be improved, I would say that within Data Streams, you have a variety of ways to interact with the data; you have the Kinesis client library, the KCL, and you have the Kinesis agent. When we were developing our architecture a couple years back, all the libraries to aggregate the data were very problematic. So the Kinesis Aggregator, which essentially improves the performance and cost by aggregating individual records into bigger one, is something that I found had a lot of room for improvement to make it a lot more refined. At the time I found a couple of limitations that I had to work around. So definitely on that side I found room for improvement.

Something else to mention is that we use Kinesis with Lambda a lot and the fact that you can only connect one Stream to one Lambda, I find is a limiting factor. I would definitely recommend to remove that constraint.

Buyer's Guide
Amazon Kinesis
October 2025
Learn what your peers think about Amazon Kinesis. Get advice and tips from experienced pros sharing their opinions. Updated: October 2025.
869,832 professionals have used our research since 2012.

For how long have I used the solution?

I have been using Amazon Kinesis for over 2 years.

What do I think about the stability of the solution?

Kinesis is super stable. This is one of the only few components in AWS for which we have never had any issues with the stability.

What do I think about the scalability of the solution?

Regarding scalability, you wouldn't use Kinesis Analytics for huge, vast amounts of data or for complex processing. It's for relatively simple processing with not too much data. So I wouldn't say that it is infinitely scalable, it really depends on your application and the volume of data.

Right now I don't see us using more of Kinesis. It has a very clear role in our architecture and satisfies that perfectly well. This is one of the initial components that you build. In a roadmap that would be the first 10%. All our work is spent in different actions right now, but we don't have any plans to grow Kinesis further. We used to do some specific real-time analysis with Kinesis Analytics on a case by case basis.It's more on a per need basis.

In other companies we use Kafka, but we didn't replace it with Kinesis.

How was the initial setup?

The initial setup is relatively straight forward. 

In terms of the initial setup of Kinesis Streams, is no big deal, you just choose the number of streams and assign a name to your application and that's pretty much it. The effort is in the applications that talk to Kinesis. I would say implementation took around six weeks. Deployment just took two people.

We have our own internal strategy which we started from scratch. So obviously we knew which components we would be deploying first. At the time we didn't use either CloudFormation or CodeBuild. So when we started, we didn't have these tools which we now use all the time for managing the architecture and CICD. But we didn't have it in the initial deployment. 


What was our ROI?

Amazon Kinesis has improved our ROI. We obviously pay monthly for Kinesis but for us it is an enabler. We wouldn't have an architecture, or we'd have a terrible architecture, if Kinesis wasn't there. 

For the data analytics component, we definitely saw that our ROI clearly improved. The alarms are something that we have actually implemented in very critical tasks when we had a company issue and that we have given visibility and a prompt response to the issues thanks to Kinesis Analytics. So that has definitely proven its ROI. 

What's my experience with pricing, setup cost, and licensing?

In terms of the prices, I think it is a fair price. Kinesis Data Stream has a very fair price relative to the value that it provides. Same for Firehose. As for Kinesis Analytics, I find it on the more expensive side because it's a newer component, something fewer people use, and something more innovative, cutting edge, and more specific. I would say Analytics is more on the expensive side of the spectrum. I would say that Kinesis Analytics is the only one that I may complain about if you like low pricing.

Which other solutions did I evaluate?

Kafka is comparable to Data Streams, not to Kinesis Analytics. For Analytics on the fly, I can talk about doing Spark streaming, which is a lot more complex and you need to spend a lot more time setting it up, but it also has more capability in terms of the scaling, so I wouldn't say it's a one-to-one comparison.

I also used StreamSets in the past, where you can gather data and you can also do some transformations on the fly. But again it's not comparable one-to-one so I wouldn't use it for the same use cases.

What other advice do I have?

My recommendation for Data Streams is to do a deep dive into the documentation before implementing to avoid what we did at the beginning. You try to process record by record or push record by record into Kinesis and then realize that it is not cost effective or even efficient. So you need to know that you  need to aggregate your data before you push it into Kinesis. So documenting yourself about the best practices in using Kinesis is definitely something I would recommend to anyone. For Kinesis Analytics, I was actually surprised at how easy it is to use an application with such power. I would say with a trial, users will realize that for for such a fairly complex application such as Kinesis Analytics, it is something that you can do very quickly with minimal resources and it gives you a lot of value for specific use cases. 

On a scale of one to ten, I would give Amazon Kinesis a nine. I don't have much to complain about Kinesis.

Which deployment model are you using for this solution?

Public Cloud

If public cloud, private cloud, or hybrid cloud, which cloud provider do you use?

Amazon Web Services (AWS)
Disclosure: My company does not have a business relationship with this vendor other than being a customer.
PeerSpot user
Shubham-Joshi - PeerSpot reviewer
Founder & CTO at QuriousBit
Real User
Top 5
Helps to stream events but needs improvement in limit
Pros and Cons
  • "I have worked in companies that build tools in-house. They face scaling challenges."
  • "Amazon Kinesis should improve its limits."

What is our primary use case?

I work in a gaming company that builds games for the global market. We use Amazon Kinesis to stream events. 

How has it helped my organization?

I have worked in companies that build tools in-house. They face scaling challenges. 

What needs improvement?

Amazon Kinesis should improve its limits. 

For how long have I used the solution?

I have been using the product for a month. 

What do I think about the stability of the solution?

I rate the tool's stability a ten out of ten. 

What do I think about the scalability of the solution?

My company has two to three users for Amazon Kinesis. 

How was the initial setup?

I rate the tool's deployment a nine out of ten. Deployment takes one day to complete. 

What's my experience with pricing, setup cost, and licensing?

The tool's entry price is cheap. However, pricing increases with data volume. 

What other advice do I have?

I rate Amazon Kinesis a seven out of ten. 

Disclosure: My company does not have a business relationship with this vendor other than being a customer.
PeerSpot user
Buyer's Guide
Amazon Kinesis
October 2025
Learn what your peers think about Amazon Kinesis. Get advice and tips from experienced pros sharing their opinions. Updated: October 2025.
869,832 professionals have used our research since 2012.
Senior Data Engineer Consultant at a tech company with 201-500 employees
Real User
Easy to use, easy to configure, and stable
Pros and Cons
  • "Setting Amazon Kinesis up is quick and easy; it only takes a few minutes to configure the necessary settings and start using it."
  • "Kinesis can be expensive, especially when dealing with large volumes of data."

What is our primary use case?

We use the solution for streaming data, in simpler terms. For example, there is a backend application; we need to make that data available for analysis. On the backend side, we don't store the history. We get all the events regarding changes incrementally. If something changes, an event is generated. This is a convenient way to keep track of all the changes.

What is most valuable?

Amazon Kinesis is similar to Kafka, another type of streaming technology, which can be referred to as a queue service to exchange data. Setting Amazon Kinesis up is quick and easy; it only takes a few minutes to configure the necessary settings and start using it. In comparison, Kafka requires setting up a cluster, even if it is available in the cloud, which can be time-consuming. Amazon Kinesis has a user-friendly interface, making it easy to adjust and scale up the number of shards if needed. The cloud is especially useful when starting something new and not needing a lot of resources initially, but with the potential to upgrade later when there is a larger load. Although there is a cost associated with using the cloud, Amazon Kinesis is very flexible and can be easily adjusted when necessary, making it a great advantage.

What needs improvement?

Kinesis can be expensive, especially when dealing with large volumes of data.

For how long have I used the solution?

I have been using the solution for two years.

What do I think about the stability of the solution?

The solution is stable and I don't recall any issues. Once we set the solution up, it usually works and we only investigate if we encounter a problem. However, if there is a large number of events to process, due to limited capacity for example with the shards, then some events may be delayed. This can be easily resolved by adjusting the configuration to provide more capacity.

What do I think about the scalability of the solution?

The solution is scalable, but this also comes with a financial cost. If we want to increase throughput, we can simply increase the number of shards or adjust some config parameters, which can be done in a matter of minutes if we know how to do it. We can scale the solution almost without limitation.

How was the initial setup?

There are a lot of details involved with the initial setup, so if we need something at the outset, we can set up the solution easily. However, the details are important since they are related to how much money we pay and we need to tailor the solution to our needs. If we want to do something more sophisticated, then we need to spend more time comprehending all the details. Initially, we can easily set something up, but eventually, we need to understand it better and adjust it more to our needs.

What's my experience with pricing, setup cost, and licensing?

Cloud services are often cheaper in the beginning, but when the amount of data and needed resources grows, they cost more and more. In my opinion, it is sometimes simpler to use an existing service rather than having to maintain our own internal infrastructure. This way, we can focus on the things we are good at and can make money from, rather than having to employ people to support the infrastructure. In general, cloud services are very convenient to use, even if we have to pay a bit more, as we know what we are paying for and can focus on other tasks. However, if the scale is large, I would consider making changes depending on the situation.

What other advice do I have?

I give the solution a nine out of ten. Amazon Kinesis is easy to use and configure, especially in the beginning. The solution is stable and I have not encountered any issues with it, nor am I aware of any. The solution is effective.

I don't see any missing features in Amazon Kinesis. I haven't spent a lot of time with this interface, as I have only configured it once. If any changes need to be made, I simply adjust Amazon Kinesis and it works. I only go into Amazon Kinesis if there is a need for a new data stream to be included or if the throughput needs to be increased. This doesn't happen very often.

Depending on the requirements, if there is a need to stream data and access it in real time, then I would consider Amazon Kinesis. However, if there is no need for real-time data access, then I will look for some other cheaper options. Companies such as Redshift, Snowflake, and BigQuery are developing databases with built-in streaming functionality. Depending on the case, this may be an option to consider. It also depends on the target; sometimes it is better to use the mechanisms available in the target tool. If we want to have the data on a stream or some hot stories, then I would consider Amazon Kinesis in that case.

Which deployment model are you using for this solution?

Public Cloud
Disclosure: My company does not have a business relationship with this vendor other than being a customer.
PeerSpot user
Chief Technology Officer at a tech services company with 51-200 employees
Real User
Good scalability and tech support
Pros and Cons
  • "The scalability is pretty good."
  • "Amazon Kinesis involved a more complex setup and configuration than Azure Event Hub."

What is our primary use case?

We do data acquisition based on what is pumped from the remote data and process it centrally so that we may present to our customers meaningful reports, charts, additional layers of support, or alerts. 

What is most valuable?

At the moment, I am not using Amazon Kinesis, but Azure Event Hub, which I have found to be more meaningful and easier to use. 

I like the event bubbling feature of Amazon Kinesis, although I ultimately switched to Azure Event Hub. Both solutions have similar features, but the latter offers us certain operational advantages. 

What needs improvement?

Amazon Kinesis is not a bad product, but Azure Event Hub provides us with certain operational advantages, as our focus is on Microsoft related coding. This is why .NET is what we use at the backend. While we can use both Azure Event Hub and Amazon Kinesis towards this end, I feel the latter to be less customized or developed for use in connection with the server-less programming.

Amazon Kinesis has a less meaningful and easy use than Azure Event Hub. 

Amazon Kinesis involved a more complex setup and configuration than Azure Event Hub. 

For how long have I used the solution?

I have been using Amazon Kinesis for the past year, although I have since switched to Azure Event Hub. 

What do I think about the scalability of the solution?

The scalability is pretty good. One can have any number of nodes spawned or replicated on the primary. Any load can be handled, perhaps a few terabytes with ease in around 15 seconds. One can scale up to this. 

How are customer service and technical support?

While we have not had occasion to contact Amazon tech support concerning the solution, we have in relation to other matters. We felt it to be good. 

How was the initial setup?

The initial setup and configuration of Amazon Kinesis was more involved than that of Azure Event Hub. 

What's my experience with pricing, setup cost, and licensing?

The solution's pricing is fair. The trick lies in Amazon's pricing. They charge according to the different layers of or types of data that is transfered.

Which other solutions did I evaluate?

In addition to Azure Event Hub, we also have experience with Apache Kafka, which I feel to offer greater power but more complex configuration. This solution has more features for a variety of purposes. 

What other advice do I have?

The question of whether I would recommend Amazon Kinesis over Azure Event Hub is tricky. While both have their advantages and I consider them to be almost equal, we feel the latter to be better suited to our environment, which is why we went with it. The data transferring policies and associated costs of Amazon were the deciding factors for me.

I rate Amazon Kinesis as an eight or nine out of ten. 

Which deployment model are you using for this solution?

Private Cloud

If public cloud, private cloud, or hybrid cloud, which cloud provider do you use?

Microsoft Azure
Disclosure: My company does not have a business relationship with this vendor other than being a customer.
PeerSpot user
Big Data Architect
Real User
Great for large environments and has good configuration but needs and experienced person to set it up
Pros and Cons
  • "The solution works well in rather sizable environments."
  • "In order to do a successful setup, the person handling the implementation needs to know the solution very well. You can't just come into it blind and with little to no experience."

What is our primary use case?

We use this solution for quite large environments.

We use it to capture and process a lot of data. We use it, for example for data analytics and query and analyze a stream's data.

How has it helped my organization?

We are a sizable organization and as such, have a lot of data. The solution allows for real-time analysis and you can use a scaler to handle data flows. 

What is most valuable?

The solution is very flexible and allows for a lot of configuration. It just offers up a lot of possibilities.

I'm using Amazon S3 and Redshift using Amazon server. I can make large configurations and update in near real-time, so that we have real-time use for batch intervals. 

The solution is great for scanning in order to handle environmental data.

The data stream feature on offer is excellent. We use it quite extensively.

The solution works well in rather sizable environments. We deal with a lot of data and it handles it very well.

The solution has a very good alerts system to allow us to respond in real-time.

The dashboards are excellent.

The solution offers very good data capture and integrates well with Power BI and Tableau, for example.

The product makes it very easy to create jobs.

What needs improvement?

The automation could be better. The solution needs to be better at information capture.

Some jobs have limitations which can make the process a bit challenging.

In order to do a successful setup, the person handling the implementation needs to know the solution very well. You can't just come into it blind and with little to no experience.

For how long have I used the solution?

I've used the solution for six or seven years or so.

What do I think about the scalability of the solution?

We work with very large environments and haven't had any issues with feeling constricted by the solution.

How was the initial setup?

Personally, based on my past experience and my long history with the solution, the initial setup was not complex. It was pretty straightforward. I find it very easy to use these tools.

A user will need to understand how to create analytics using processing a large amount of information. There may be legacy solutions in the mix as well. A new user will need to understand the environment and all of the requirements before really digging in.

What I will need, basically, is a data map, where I can find any legacy data. From there I can do the setup and it goes pretty smoothly.

What about the implementation team?

I handle the implementation myself.

Which other solutions did I evaluate?

You can compare this solution to Data Factory and Hadoop. They have a few overlapping characteristics. However, for my industry, Hadoop, for example, wouldn't work as it was lacking some characteristics and parameters and some understanding of the industry itself.

What other advice do I have?

I have a lot of experience in Kinesis and data analytics including in networking in the Amazon AWS environment. My experience is as a big data architect. I draw all environments in AWS. 

On a scale from one to ten, I would rate the solution at a six. It's pretty good, and great for big environments, however, you do need to be well versed in the product to set it up.

Disclosure: My company does not have a business relationship with this vendor other than being a customer.
PeerSpot user